• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of genbioBioMed CentralBiomed Central Web Sitesearchsubmit a manuscriptregisterthis articleGenome BiologyJournal Front Page
Genome Biol. 2003; 4(1): R3.
Published online Dec 17, 2002. doi:  10.1186/gb-2002-4-1-r3
PMCID: PMC151284

Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state

Abstract

Background

Metabolic and regulatory gene networks generally tend to be stable. However, we have recently shown that overexpression of the transcriptional activator Hap4p in yeast causes cells to move to a state characterized by increased respiratory activity. To understand why overexpression of HAP4 is able to override the signals that normally result in glucose repression of mitochondrial function, we analyzed in detail the changes that occur in these cells.

Results

Whole-genome expression profiling and fingerprinting of the regulatory activity network show that HAP4 overexpression provokes changes that also occur during the diauxic shift. Overexpression of HAP4, however, primarily acts on mitochondrial function and biogenesis. In fact, a number of nuclear genes encoding mitochondrial proteins are induced to a greater extent than in cells that have passed through a normal diauxic shift: in addition to genes required for mitochondrial energy conservation they include genes encoding mitochondrial ribosomal proteins.

Conclusions

We show that overproduction of a single nuclear transcription factor enables cells to move to a novel state that displays features typical of, but clearly not identical to, other derepressed states.


Articles from Genome Biology are provided here courtesy of BioMed Central
PubReader format: click here to try

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...