• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. Oct 1, 1998; 26(19): 4508–4515.
PMCID: PMC147876

Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease.

Abstract

Protein B23 is an abundant nucleolar protein and a putative ribosome assembly factor which possesses an intrinsic ribonuclease activity. In the current work, the effects of RNA sequence and secondary structure on the cleavage preference by protein B23 were studied. Protein B23 ribonuclease preferentially cleaved the single-stranded homopolymers poly(A), poly(U) and poly(C). However, double-stranded co-polymers and poly(G) were resistant to cleavage. No base specificity was observed with an oligoribonucleotide substrate. The action of protein B23 ribonuclease on different regions of pre-rRNA was studied using transcripts synthesized in vitro from cloned rDNA segments. Although no specific cleavages were detected in transcripts containing sequences from the 5' external transcribed spacer or the first internal transcribed spacer, the enzyme preferentially cleaved the second internal transcribed spacer (ITS2) approximately 250 nt downstream from the 3'-end of 5.8S rRNA. Preferential cleavage was retained when the transcript was extended by 100 nt at the 3'-end, but abolished in a transcript lacking this cleavage site. Furthermore, this site was not susceptible to cleavage by RNase A or RNase T1. These results, in conjunction with the sub-nucleolar localization of the protein with elements of the processing machinery, suggest that the protein B23 endoribonuclease could play a role in pre-rRNA processing in ITS2.

Full Text

The Full Text of this article is available as a PDF (219K).

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...