• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. Aug 1, 1998; 26(15): 3528–3535.
PMCID: PMC147723

The human LINE-1 reverse transcriptase:effect of deletions outside the common reverse transcriptase domain.

Abstract

Heterologous expression of human LINE-1 ORF2 in yeast yielded a single polypeptide (Mr145 000) which reacted with specific antibodies and co-purified with a reverse transcriptase activity not present in the host cells. Various deletion derivatives of the ORF2 polypeptide were also synthesized. Reverse transcriptase assays using synthetic polynucleotides as template and primer revealed that ORF2 protein missing a significant portion of the N-terminal endonuclease domain still retains some activity. Deletion of the C-terminal cysteine-rich motif reduces activity only a small amount. Three non-overlapping deletions spanning 144 amino acids just N-terminal to the common polymerase domain of the ORF2 protein were analyzed for their effect on reverse transcriptase activity; this region contains the previously-noted conserved Z motif. The two deletions most proximal to the polymerase domain eliminate activity while the third, most-distal deletion had no effect. An inactive enzyme was also produced by substitution of two different amino acids in a highly-conserved octapeptide sequence, Z8, located within the region removed to make the deletion most proximal to the polymerase domain; substitution of a third had no effect. We conclude that the octapeptide sequence and neighboring amino acids in the Z region are essential for reverse transcriptase activity, while the endonuclease and cysteine-rich domains are not absolutely required.

Full Text

The Full Text of this article is available as a PDF (173K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Xiong Y, Eickbush TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990 Oct;9(10):3353–3362. [PMC free article] [PubMed]
  • Hwu HR, Roberts JW, Davidson EH, Britten RJ. Insertion and/or deletion of many repeated DNA sequences in human and higher ape evolution. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3875–3879. [PMC free article] [PubMed]
  • Smit AF. The origin of interspersed repeats in the human genome. Curr Opin Genet Dev. 1996 Dec;6(6):743–748. [PubMed]
  • Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH., Jr Many human L1 elements are capable of retrotransposition. Nat Genet. 1997 May;16(1):37–43. [PubMed]
  • Kazazian HH, Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature. 1988 Mar 10;332(6160):164–166. [PubMed]
  • Holmes SE, Dombroski BA, Krebs CM, Boehm CD, Kazazian HH., Jr A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nat Genet. 1994 Jun;7(2):143–148. [PubMed]
  • Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J, Kinzler KW, Vogelstein B, Nakamura Y. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 1992 Feb 1;52(3):643–645. [PubMed]
  • Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH., Jr Isolation of an active human transposable element. Science. 1991 Dec 20;254(5039):1805–1808. [PubMed]
  • Becker KG, Swergold GD, Ozato K, Thayer RE. Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. Hum Mol Genet. 1993 Oct;2(10):1697–1702. [PubMed]
  • Mathias SL, Scott AF. Promoter binding proteins of an active human L1 retrotransposon. Biochem Biophys Res Commun. 1993 Mar 15;191(2):625–632. [PubMed]
  • Minakami R, Kurose K, Etoh K, Furuhata Y, Hattori M, Sakaki Y. Identification of an internal cis-element essential for the human L1 transcription and a nuclear factor(s) binding to the element. Nucleic Acids Res. 1992 Jun 25;20(12):3139–3145. [PMC free article] [PubMed]
  • Swergold GD. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol. 1990 Dec;10(12):6718–6729. [PMC free article] [PubMed]
  • Thayer RE, Singer MF, Fanning TG. Undermethylation of specific LINE-1 sequences in human cells producing a LINE-1-encoded protein. Gene. 1993 Nov 15;133(2):273–277. [PubMed]
  • Hohjoh H, Singer MF. Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J. 1997 Oct 1;16(19):6034–6043. [PMC free article] [PubMed]
  • Bratthauer GL, Fanning TG. LINE-1 retrotransposon expression in pediatric germ cell tumors. Cancer. 1993 Apr 1;71(7):2383–2386. [PubMed]
  • Leibold DM, Swergold GD, Singer MF, Thayer RE, Dombroski BA, Fanning TG. Translation of LINE-1 DNA elements in vitro and in human cells. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6990–6994. [PMC free article] [PubMed]
  • Hohjoh H, Singer MF. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J. 1996 Feb 1;15(3):630–639. [PMC free article] [PubMed]
  • Hohjoh H, Singer MF. Ribonuclease and high salt sensitivity of the ribonucleoprotein complex formed by the human LINE-1 retrotransposon. J Mol Biol. 1997 Aug 8;271(1):7–12. [PubMed]
  • Martin SL, Branciforte D. Synchronous expression of LINE-1 RNA and protein in mouse embryonal carcinoma cells. Mol Cell Biol. 1993 Sep;13(9):5383–5392. [PMC free article] [PubMed]
  • Dombroski BA, Feng Q, Mathias SL, Sassaman DM, Scott AF, Kazazian HH, Jr, Boeke JD. An in vivo assay for the reverse transcriptase of human retrotransposon L1 in Saccharomyces cerevisiae. Mol Cell Biol. 1994 Jul;14(7):4485–4492. [PMC free article] [PubMed]
  • Feng Q, Moran JV, Kazazian HH, Jr, Boeke JD. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. 1996 Nov 29;87(5):905–916. [PubMed]
  • Mathias SL, Scott AF, Kazazian HH, Jr, Boeke JD, Gabriel A. Reverse transcriptase encoded by a human transposable element. Science. 1991 Dec 20;254(5039):1808–1810. [PubMed]
  • Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH., Jr High frequency retrotransposition in cultured mammalian cells. Cell. 1996 Nov 29;87(5):917–927. [PubMed]
  • Martín F, Olivares M, López MC, Alonso C. Do non-long terminal repeat retrotransposons have nuclease activity? Trends Biochem Sci. 1996 Aug;21(8):283–285. [PubMed]
  • Doolittle RF, Feng DF, Johnson MS, McClure MA. Origins and evolutionary relationships of retroviruses. Q Rev Biol. 1989 Mar;64(1):1–30. [PubMed]
  • Fanning T, Singer M. The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retrovirus proteins. Nucleic Acids Res. 1987 Mar 11;15(5):2251–2260. [PMC free article] [PubMed]
  • Dhellin O, Maestre J, Heidmann T. Functional differences between the human LINE retrotransposon and retroviral reverse transcriptases for in vivo mRNA reverse transcription. EMBO J. 1997 Nov 3;16(21):6590–6602. [PMC free article] [PubMed]
  • McClure MA. Evolution of retroposons by acquisition or deletion of retrovirus-like genes. Mol Biol Evol. 1991 Nov;8(6):835–856. [PubMed]
  • Xiong Y, Eickbush TH. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons. Mol Cell Biol. 1988 Jan;8(1):114–123. [PMC free article] [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Skowronski J, Fanning TG, Singer MF. Unit-length line-1 transcripts in human teratocarcinoma cells. Mol Cell Biol. 1988 Apr;8(4):1385–1397. [PMC free article] [PubMed]
  • Wang H, Lambowitz AM. The Mauriceville plasmid reverse transcriptase can initiate cDNA synthesis de novo and may be related to reverse transcriptase and DNA polymerase progenitor. Cell. 1993 Dec 17;75(6):1071–1081. [PubMed]
  • Naas TP, DeBerardinis RJ, Moran JV, Ostertag EM, Kingsmore SF, Seldin MF, Hayashizaki Y, Martin SL, Kazazian HH. An actively retrotransposing, novel subfamily of mouse L1 elements. EMBO J. 1998 Jan 15;17(2):590–597. [PMC free article] [PubMed]
  • Pritchard MA, Dura JM, Pélisson A, Bucheton A, Finnegan DJ. A cloned I-factor is fully functional in Drosophila melanogaster. Mol Gen Genet. 1988 Nov;214(3):533–540. [PubMed]
  • Cambareri EB, Helber J, Kinsey JA. Tad1-1, an active LINE-like element of Neurospora crassa. Mol Gen Genet. 1994 Mar;242(6):658–665. [PubMed]
  • Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992 Jun 26;256(5065):1783–1790. [PubMed]
  • Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD, Ziaugra L, Beijersbergen RL, Davidoff MJ, Liu Q, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell. 1997 Aug 22;90(4):785–795. [PubMed]
  • Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997 Aug 15;277(5328):955–959. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...