• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. Mar 1, 1998; 26(5): 1135–1143.
PMCID: PMC147377

A survey of 178 NF-Y binding CCAAT boxes.


The CCAAT box is one of the most common elements in eukaryotic promoters, found in the forward or reverse orientation. Among the various DNA binding proteins that interact with this sequence, only NF-Y (CBF, HAP2/3/4/5) has been shown to absolutely require all 5 nt. Analysis of a database with 178 bona fide NF-Y binding sites in 96 unrelated promoters confirms this need and points to specific additional flanking nucleotides (C, Pu, Pu on the 5'-side and C/G, A/G, G,A/C, G on the 3'-side) required for efficient binding. The frequency of CCAAT boxes appears to be relatively higher in TATA-less promoters, particularly in the reverse ATTGG orientation. In TATA-containing promoters the CCAAT box is preferentially located in the -80/-100 region (mean position -89) and is not found nearer to the Start site than -50. In TATA-less promoters it is usually closer to the +1 signal (at -66 on average) and is sometimes present in proximity to the Cap site. The consensus and location of NF-Y binding sites parallel almost perfectly a previous general statistical study on CCAAT boxes in 502 unrelated promoters. This is an indication that NF-Y is the major, if not the sole, CCAAT box recognizing protein and that it might serve different roles in TATA-containing and TATA-less promoters.

Full Text

The Full Text of this article is available as a PDF (375K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Tjian R, Maniatis T. Transcriptional activation: a complex puzzle with few easy pieces. Cell. 1994 Apr 8;77(1):5–8. [PubMed]
  • Bucher P, Trifonov EN. CCAAT box revisited: bidirectionality, location and context. J Biomol Struct Dyn. 1988 Jun;5(6):1231–1236. [PubMed]
  • Bucher P. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol. 1990 Apr 20;212(4):563–578. [PubMed]
  • Benoist C, O'Hare K, Breathnach R, Chambon P. The ovalbumin gene-sequence of putative control regions. Nucleic Acids Res. 1980 Jan 11;8(1):127–142. [PMC free article] [PubMed]
  • Efstratiadis A, Posakony JW, Maniatis T, Lawn RM, O'Connell C, Spritz RA, DeRiel JK, Forget BG, Weissman SM, Slightom JL, et al. The structure and evolution of the human beta-globin gene family. Cell. 1980 Oct;21(3):653–668. [PubMed]
  • Landschulz WH, Johnson PF, Adashi EY, Graves BJ, McKnight SL. Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev. 1988 Jul;2(7):786–800. [PubMed]
  • Umek RM, Friedman AD, McKnight SL. CCAAT-enhancer binding protein: a component of a differentiation switch. Science. 1991 Jan 18;251(4991):288–292. [PubMed]
  • Osada S, Yamamoto H, Nishihara T, Imagawa M. DNA binding specificity of the CCAAT/enhancer-binding protein transcription factor family. J Biol Chem. 1996 Feb 16;271(7):3891–3896. [PubMed]
  • Jones KA, Yamamoto KR, Tjian R. Two distinct transcription factors bind to the HSV thymidine kinase promoter in vitro. Cell. 1985 Sep;42(2):559–572. [PubMed]
  • Zorbas H, Rein T, Krause A, Hoffmann K, Winnacker EL. Nuclear factor I (NF I) binds to an NF I-type site but not to the CCAAT site in the human alpha-globin gene promoter. J Biol Chem. 1992 Apr 25;267(12):8478–8484. [PubMed]
  • Osada S, Daimon S, Nishihara T, Imagawa M. Identification of DNA binding-site preferences for nuclear factor I-A. FEBS Lett. 1996 Jul 15;390(1):44–46. [PubMed]
  • Wolffe AP, Tafuri S, Ranjan M, Familari M. The Y-box factors: a family of nucleic acid binding proteins conserved from Escherichia coli to man. New Biol. 1992 Apr;4(4):290–298. [PubMed]
  • Barberis A, Superti-Furga G, Busslinger M. Mutually exclusive interaction of the CCAAT-binding factor and of a displacement protein with overlapping sequences of a histone gene promoter. Cell. 1987 Jul 31;50(3):347–359. [PubMed]
  • Superti-Furga G, Barberis A, Schaffner G, Busslinger M. The -117 mutation in Greek HPFH affects the binding of three nuclear factors to the CCAAT region of the gamma-globin gene. EMBO J. 1988 Oct;7(10):3099–3107. [PMC free article] [PubMed]
  • Neufeld EJ, Skalnik DG, Lievens PM, Orkin SH. Human CCAAT displacement protein is homologous to the Drosophila homeoprotein, cut. Nat Genet. 1992 Apr;1(1):50–55. [PubMed]
  • Aufiero B, Neufeld EJ, Orkin SH. Sequence-specific DNA binding of individual cut repeats of the human CCAAT displacement/cut homeodomain protein. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7757–7761. [PMC free article] [PubMed]
  • Lum LS, Sultzman LA, Kaufman RJ, Linzer DI, Wu BJ. A cloned human CCAAT-box-binding factor stimulates transcription from the human hsp70 promoter. Mol Cell Biol. 1990 Dec;10(12):6709–6717. [PMC free article] [PubMed]
  • Gallinari P, La Bella F, Heintz N. Characterization and purification of H1TF2, a novel CCAAT-binding protein that interacts with a histone H1 subtype-specific consensus element. Mol Cell Biol. 1989 Apr;9(4):1566–1575. [PMC free article] [PubMed]
  • Martinelli R, Heintz N. H1TF2A, the large subunit of a heterodimeric, glutamine-rich CCAAT-binding transcription factor involved in histone H1 cell cycle regulation. Mol Cell Biol. 1994 Dec;14(12):8322–8332. [PMC free article] [PubMed]
  • Dorn A, Bollekens J, Staub A, Benoist C, Mathis D. A multiplicity of CCAAT box-binding proteins. Cell. 1987 Sep 11;50(6):863–872. [PubMed]
  • Hatamochi A, Golumbek PT, Van Schaftingen E, de Crombrugghe B. A CCAAT DNA binding factor consisting of two different components that are both required for DNA binding. J Biol Chem. 1988 Apr 25;263(12):5940–5947. [PubMed]
  • Kim CG, Sheffery M. Physical characterization of the purified CCAAT transcription factor, alpha-CP1. J Biol Chem. 1990 Aug 5;265(22):13362–13369. [PubMed]
  • Hooft van Huijsduijnen RA, Bollekens J, Dorn A, Benoist C, Mathis D. Properties of a CCAAT box-binding protein. Nucleic Acids Res. 1987 Sep 25;15(18):7265–7282. [PMC free article] [PubMed]
  • Hooft van Huijsduijnen R, Li XY, Black D, Matthes H, Benoist C, Mathis D. Co-evolution from yeast to mouse: cDNA cloning of the two NF-Y (CP-1/CBF) subunits. EMBO J. 1990 Oct;9(10):3119–3127. [PMC free article] [PubMed]
  • Hahn S, Guarente L. Yeast HAP2 and HAP3: transcriptional activators in a heteromeric complex. Science. 1988 Apr 15;240(4850):317–321. [PubMed]
  • Chen H, Kinsey JA. Purification of a heteromeric CCAAT binding protein from Neurospora crassa. Mol Gen Genet. 1995 Nov 27;249(3):301–308. [PubMed]
  • Sinha S, Maity SN, Lu J, de Crombrugghe B. Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1624–1628. [PMC free article] [PubMed]
  • Maity SN, Vuorio T, de Crombrugghe B. The B subunit of a rat heteromeric CCAAT-binding transcription factor shows a striking sequence identity with the yeast Hap2 transcription factor. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5378–5382. [PMC free article] [PubMed]
  • Vuorio T, Maity SN, de Crombrugghe B. Purification and molecular cloning of the "A" chain of a rat heteromeric CCAAT-binding protein. Sequence identity with the yeast HAP3 transcription factor. J Biol Chem. 1990 Dec 25;265(36):22480–22486. [PubMed]
  • Li XY, Mantovani R, Hooft van Huijsduijnen R, Andre I, Benoist C, Mathis D. Evolutionary variation of the CCAAT-binding transcription factor NF-Y. Nucleic Acids Res. 1992 Mar 11;20(5):1087–1091. [PMC free article] [PubMed]
  • Pinkham JL, Olesen JT, Guarente LP. Sequence and nuclear localization of the Saccharomyces cerevisiae HAP2 protein, a transcriptional activator. Mol Cell Biol. 1987 Feb;7(2):578–585. [PMC free article] [PubMed]
  • Hahn S, Pinkham J, Wei R, Miller R, Guarente L. The HAP3 regulatory locus of Saccharomyces cerevisiae encodes divergent overlapping transcripts. Mol Cell Biol. 1988 Feb;8(2):655–663. [PMC free article] [PubMed]
  • Xing Y, Fikes JD, Guarente L. Mutations in yeast HAP2/HAP3 define a hybrid CCAAT box binding domain. EMBO J. 1993 Dec;12(12):4647–4655. [PMC free article] [PubMed]
  • McNabb DS, Xing Y, Guarente L. Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev. 1995 Jan 1;9(1):47–58. [PubMed]
  • Nakshatri H, Bhat-Nakshatri P, Currie RA. Subunit association and DNA binding activity of the heterotrimeric transcription factor NF-Y is regulated by cellular redox. J Biol Chem. 1996 Nov 15;271(46):28784–28791. [PubMed]
  • Bellorini M, Zemzoumi K, Farina A, Berthelsen J, Piaggio G, Mantovani R. Cloning and expression of human NF-YC. Gene. 1997 Jul 1;193(1):119–125. [PubMed]
  • Olesen JT, Fikes JD, Guarente L. The Schizosaccharomyces pombe homolog of Saccharomyces cerevisiae HAP2 reveals selective and stringent conservation of the small essential core protein domain. Mol Cell Biol. 1991 Feb;11(2):611–619. [PMC free article] [PubMed]
  • Albani D, Robert LS. Cloning and characterization of a Brassica napus gene encoding a homologue of the B subunit of a heteromeric CCAAT-binding factor. Gene. 1995 Dec 29;167(1-2):209–213. [PubMed]
  • Zemzoumi K, Serra E, Mantovani R, Trolet J, Capron A, Dissous C. Cloning of Schistosoma mansoni transcription factor NF-YA subunit: phylogenic conservation of the HAP-2 homology domain. Mol Biochem Parasitol. 1996 May;77(2):161–172. [PubMed]
  • Li Z, Kalasapudi SR, Childs G. Isolation and characterization of cDNAs encoding the sea urchin (Strongylocentrotus purpuratus) homologue of the CCAAT binding protein NF-Y A subunit. Nucleic Acids Res. 1993 Sep 25;21(19):4639–4639. [PMC free article] [PubMed]
  • Mulder W, Scholten IH, de Boer RW, Grivell LA. Sequence of the HAP3 transcription factor of Kluyveromyces lactis predicts the presence of a novel 4-cysteine zinc-finger motif. Mol Gen Genet. 1994 Oct 17;245(1):96–106. [PubMed]
  • Papagiannopoulos P, Andrianopoulos A, Sharp JA, Davis MA, Hynes MJ. The hapC gene of Aspergillus nidulans is involved in the expression of CCAAT-containing promoters. Mol Gen Genet. 1996 Jun 24;251(4):412–421. [PubMed]
  • Maity SN, de Crombrugghe B. Biochemical analysis of the B subunit of the heteromeric CCAAT-binding factor. A DNA-binding domain and a subunit interaction domain are specified by two separate segments. J Biol Chem. 1992 Apr 25;267(12):8286–8292. [PubMed]
  • Xing Y, Zhang S, Olesen JT, Rich A, Guarente L. Subunit interaction in the CCAAT-binding heteromeric complex is mediated by a very short alpha-helix in HAP2. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3009–3013. [PMC free article] [PubMed]
  • Mantovani R, Li XY, Pessara U, Hooft van Huisjduijnen R, Benoist C, Mathis D. Dominant negative analogs of NF-YA. J Biol Chem. 1994 Aug 12;269(32):20340–20346. [PubMed]
  • Baxevanis AD, Arents G, Moudrianakis EN, Landsman D. A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic Acids Res. 1995 Jul 25;23(14):2685–2691. [PMC free article] [PubMed]
  • Sinha S, Kim IS, Sohn KY, de Crombrugghe B, Maity SN. Three classes of mutations in the A subunit of the CCAAT-binding factor CBF delineate functional domains involved in the three-step assembly of the CBF-DNA complex. Mol Cell Biol. 1996 Jan;16(1):328–337. [PMC free article] [PubMed]
  • Kim IS, Sinha S, de Crombrugghe B, Maity SN. Determination of functional domains in the C subunit of the CCAAT-binding factor (CBF) necessary for formation of a CBF-DNA complex: CBF-B interacts simultaneously with both the CBF-A and CBF-C subunits to form a heterotrimeric CBF molecule. Mol Cell Biol. 1996 Aug;16(8):4003–4013. [PMC free article] [PubMed]
  • Mantovani R, Pessara U, Tronche F, Li XY, Knapp AM, Pasquali JL, Benoist C, Mathis D. Monoclonal antibodies to NF-Y define its function in MHC class II and albumin gene transcription. EMBO J. 1992 Sep;11(9):3315–3322. [PMC free article] [PubMed]
  • Chodosh LA, Baldwin AS, Carthew RW, Sharp PA. Human CCAAT-binding proteins have heterologous subunits. Cell. 1988 Apr 8;53(1):11–24. [PubMed]
  • Faber M, Sealy L. Rous sarcoma virus enhancer factor I is a ubiquitous CCAAT transcription factor highly related to CBF and NF-Y. J Biol Chem. 1990 Dec 25;265(36):22243–22254. [PubMed]
  • Ronchi A, Bellorini M, Mongelli N, Mantovani R. CCAAT-box binding protein NF-Y (CBF, CP1) recognizes the minor groove and distorts DNA. Nucleic Acids Res. 1995 Nov 25;23(22):4565–4572. [PMC free article] [PubMed]
  • Viville S, Jongeneel V, Koch W, Mantovani R, Benoist C, Mathis D. The E alpha promoter: a linker-scanning analysis. J Immunol. 1991 May 1;146(9):3211–3217. [PubMed]
  • Bellorini M, Dantonel JC, Yoon JB, Roeder RG, Tora L, Mantovani R. The major histocompatibility complex class II Ea promoter requires TFIID binding to an initiator sequence. Mol Cell Biol. 1996 Feb;16(2):503–512. [PMC free article] [PubMed]
  • Benoist C, Mathis D. Regulation of major histocompatibility complex class-II genes: X, Y and other letters of the alphabet. Annu Rev Immunol. 1990;8:681–715. [PubMed]
  • Dorn A, Fehling HJ, Koch W, Le Meur M, Gerlinger P, Benoist C, Mathis D. B-cell control region at the 5' end of a major histocompatibility complex class II gene: sequences and factors. Mol Cell Biol. 1988 Oct;8(10):3975–3987. [PMC free article] [PubMed]
  • Feriotto G, Mischiati C, Bianchi N, Rutigliano C, Giacomini P, Gambari R. Sequencing of an upstream region of the human HLA-DRA gene containing X' and Y' boxes. Nucleic Acids Res. 1995 May 25;23(10):1671–1678. [PMC free article] [PubMed]
  • Kern MJ, Woodward JG. The same CCAAT box-binding factor binds to the promoter of two coordinately regulated major histocompatibility complex class II genes. Mol Cell Biol. 1991 Jan;11(1):578–581. [PMC free article] [PubMed]
  • Turco E, Manfras BJ, Ge L, Rudert WA, Trucco M. The X boxes from promoters of HLA class II B genes at different loci do not complete for nuclear protein-specific binding. Immunogenetics. 1990;32(2):117–128. [PubMed]
  • Sittisombut N. Two distinct nuclear factors bind the conserved regulatory sequences of a rabbit major histocompatibility complex class II gene. Mol Cell Biol. 1988 May;8(5):2034–2041. [PMC free article] [PubMed]
  • Wright KL, Moore TL, Vilen BJ, Brown AM, Ting JP. Major histocompatibility complex class II-associated invariant chain gene expression is up-regulated by cooperative interactions of Sp1 and NF-Y. J Biol Chem. 1995 Sep 8;270(36):20978–20986. [PubMed]
  • Wright TM, Farber JM. 5' regulatory region of a novel cytokine gene mediates selective activation by interferon gamma. J Exp Med. 1991 Feb 1;173(2):417–422. [PMC free article] [PubMed]
  • Luo W, Skalnik DG. CCAAT displacement protein competes with multiple transcriptional activators for binding to four sites in the proximal gp91phox promoter. J Biol Chem. 1996 Jul 26;271(30):18203–18210. [PubMed]
  • Ishimaru F, Mari B, Shipp MA. The type 2 CD10/neutral endopeptidase 24.11 promoter: functional characterization and tissue-specific regulation by CBF/NF-Y isoforms. Blood. 1997 Jun 1;89(11):4136–4145. [PubMed]
  • Brown ST, Miranda GA, Galic Z, Hartman IZ, Lyon CJ, Aguilera RJ. Regulation of the RAG-1 promoter by the NF-Y transcription factor. J Immunol. 1997 Jun 1;158(11):5071–5074. [PubMed]
  • Li-Weber M, Davydov IV, Krafft H, Krammer PH. The role of NF-Y and IRF-2 in the regulation of human IL-4 gene expression. J Immunol. 1994 Nov 1;153(9):4122–4133. [PubMed]
  • Heussler VT, Eichhorn M, Dobbelaere DA. Cloning of a full-length cDNA encoding bovine interleukin 4 by the polymerase chain reaction. Gene. 1992 May 15;114(2):273–278. [PubMed]
  • Spanopoulou E, Giguere V, Grosveld F. The functional domains of the murine Thy-1 gene promoter. Mol Cell Biol. 1991 Apr;11(4):2216–2228. [PMC free article] [PubMed]
  • Yost SE, Shewchuk B, Hardison R. Nuclear protein-binding sites in a transcriptional control region of the rabbit alpha-globin gene. Mol Cell Biol. 1993 Sep;13(9):5439–5449. [PMC free article] [PubMed]
  • Stalder J, Wirthmüller U, Beck J, Gruber A, Meyerhof W, Knöchel W, Weber R. Primary structure and evolutionary relationship between the adult alpha-globin genes and their 5'-flanking regions of Xenopus laevis and Xenopus tropicalis. J Mol Evol. 1988 Dec;28(1-2):64–71. [PubMed]
  • Mantovani R, Superti-Furga G, Gilman J, Ottolenghi S. The deletion of the distal CCAAT box region of the A gamma-globin gene in black HPFH abolishes the binding of the erythroid specific protein NFE3 and of the CCAAT displacement protein. Nucleic Acids Res. 1989 Aug 25;17(16):6681–6691. [PMC free article] [PubMed]
  • Gumucio DL, Heilstedt-Williamson H, Gray TA, Tarlé SA, Shelton DA, Tagle DA, Slightom JL, Goodman M, Collins FS. Phylogenetic footprinting reveals a nuclear protein which binds to silencer sequences in the human gamma and epsilon globin genes. Mol Cell Biol. 1992 Nov;12(11):4919–4929. [PMC free article] [PubMed]
  • Wandersee NJ, Ferris RC, Ginder GD. Intronic and flanking sequences are required to silence enhancement of an embryonic beta-type globin gene. Mol Cell Biol. 1996 Jan;16(1):236–246. [PMC free article] [PubMed]
  • Karsenty G, Golumbek P, de Crombrugghe B. Point mutations and small substitution mutations in three different upstream elements inhibit the activity of the mouse alpha 2(I) collagen promoter. J Biol Chem. 1988 Sep 25;263(27):13909–13915. [PubMed]
  • Collins M, Leaner VD, Madikizela M, Parker MI. Regulation of the human alpha 2(1) procollagen gene by sequences adjacent to the CCAAT box. Biochem J. 1997 Feb 15;322(Pt 1):199–206. [PMC free article] [PubMed]
  • Karsenty G, de Crombrugghe B. Two different negative and one positive regulatory factors interact with a short promoter segment of the alpha 1 (I) collagen gene. J Biol Chem. 1990 Jun 15;265(17):9934–9942. [PubMed]
  • Tezuka K i, Denhardt DT, Rodan GA, Harada S i. Stimulation of mouse osteopontin promoter by v-Src is mediated by a CCAAT box-binding factor. J Biol Chem. 1996 Sep 13;271(37):22713–22717. [PubMed]
  • Raymondjean M, Cereghini S, Yaniv M. Several distinct "CCAAT" box binding proteins coexist in eukaryotic cells. Proc Natl Acad Sci U S A. 1988 Feb;85(3):757–761. [PMC free article] [PubMed]
  • Wuarin J, Mueller C, Schibler U. A ubiquitous CCAAT factor is required for efficient in vitro transcription from the mouse albumin promoter. J Mol Biol. 1990 Aug 20;214(4):865–874. [PubMed]
  • Tronche F, Rollier A, Sourdive D, Cereghini S, Yaniv M. NFY or a related CCAAT binding factor can be replaced by other transcriptional activators for co-operation with HNF1 in driving the rat albumin promoter in vivo. J Mol Biol. 1991 Nov 5;222(1):31–43. [PubMed]
  • Schorpp M, Kugler W, Wagner U, Ryffel GU. Hepatocyte-specific promoter element HP1 of the Xenopus albumin gene interacts with transcriptional factors of mammalian hepatocytes. J Mol Biol. 1988 Jul 20;202(2):307–320. [PubMed]
  • Novak EM, Bydlowski SP. NFY transcription factor binds to regulatory element AIC and transactivates the human apolipoprotein A-I promoter in HEPG2 cells. Biochem Biophys Res Commun. 1997 Feb 3;231(1):140–143. [PubMed]
  • Papazafiri P, Ogami K, Ramji DP, Nicosia A, Monaci P, Cladaras C, Zannis VI. Promoter elements and factors involved in hepatic transcription of the human ApoA-I gene positive and negative regulators bind to overlapping sites. J Biol Chem. 1991 Mar 25;266(9):5790–5797. [PubMed]
  • Raymondjean M, Pichard AL, Gregori C, Ginot F, Kahn A. Interplay of an original combination of factors: C/EBP, NFY, HNF3, and HNF1 in the rat aldolase B gene promoter. Nucleic Acids Res. 1991 Nov 25;19(22):6145–6153. [PMC free article] [PubMed]
  • Schweizer-Groyer G, Groyer A, Cadepond F, Grange T, Baulieu EE, Pictet R. Expression from the tyrosine aminotransferase promoter (nt -350 to +1) is liver-specific and dependent on the binding of both liver-enriched and ubiquitous trans-acting factors. Nucleic Acids Res. 1994 May 11;22(9):1583–1592. [PMC free article] [PubMed]
  • Brouillet A, Darbouy M, Okamoto T, Chobert MN, Lahuna O, Garlatti M, Goodspeed D, Laperche Y. Functional characterization of the rat gamma-glutamyl transpeptidase promoter that is expressed and regulated in the liver and hepatoma cells. J Biol Chem. 1994 May 27;269(21):14878–14884. [PubMed]
  • Noda C, Fukushima C, Fujiwara T, Matsuda K, Kobune Y, Ichihara A. Developmental regulation of rat serine dehydratase gene expression: evidence for the presence of a repressor in fetal hepatocytes. Biochim Biophys Acta. 1994 Mar 1;1217(2):163–173. [PubMed]
  • Alonso CR, Pesce CG, Kornblihtt AR. The CCAAT-binding proteins CP1 and NF-I cooperate with ATF-2 in the transcription of the fibronectin gene. J Biol Chem. 1996 Sep 6;271(36):22271–22279. [PubMed]
  • Matsubasa T, Takiguchi M, Matsuda I, Mori M. Rat argininosuccinate lyase promoter: the dyad-symmetric CCAAT box sequence CCAATTGG in the promoter is recognized by NF-Y. J Biochem. 1994 Nov;116(5):1044–1055. [PubMed]
  • McGlynn LK, Mueller CR, Begbie M, Notley CR, Lillicrap D. Role of the liver-enriched transcription factor hepatocyte nuclear factor 1 in transcriptional regulation of the factor V111 gene. Mol Cell Biol. 1996 May;16(5):1936–1945. [PMC free article] [PubMed]
  • Hung HL, High KA. Liver-enriched transcription factor HNF-4 and ubiquitous factor NF-Y are critical for expression of blood coagulation factor X. J Biol Chem. 1996 Jan 26;271(4):2323–2331. [PubMed]
  • Ueda A, Yoshimura T. Characterization of cis-acting elements of the gene for macrophage-stimulating protein from the human. The involvement of positive and negative regulatory elements. J Biol Chem. 1996 Aug 23;271(34):20265–20272. [PubMed]
  • Yanagawa Y, Chen JC, Hsu LC, Yoshida A. The transcriptional regulation of human aldehyde dehydrogenase I gene. The structural and functional analysis of the promoter. J Biol Chem. 1995 Jul 21;270(29):17521–17527. [PubMed]
  • Currie RA, Eckel RH. Characterization of a high affinity octamer transcription factor binding site in the human lipoprotein lipase promoter. Arch Biochem Biophys. 1992 Nov 1;298(2):630–639. [PubMed]
  • Lu SC, Bensadoun A. Identification of the 5' regulatory elements of avian lipoprotein lipase gene: synergistic effect of multiple factors. Biochim Biophys Acta. 1993 Dec 14;1216(3):375–384. [PubMed]
  • Osawa H, Robey RB, Printz RL, Granner DK. Identification and characterization of basal and cyclic AMP response elements in the promoter of the rat hexokinase II gene. J Biol Chem. 1996 Jul 19;271(29):17296–17303. [PubMed]
  • Roder K, Wolf SS, Beck KF, Sickinger S, Schweizer M. NF-Y binds to the inverted CCAAT box, an essential element for cAMP-dependent regulation of the rat fatty acid synthase (FAS) gene. Gene. 1997 Jan 3;184(1):21–26. [PubMed]
  • Roder K, Wolf SS, Beck KF, Schweizer M. Cooperative binding of NF-Y and Sp1 at the DNase I-hypersensitive site, fatty acid synthase insulin-responsive element 1, located at -500 in the rat fatty acid synthase promoter. J Biol Chem. 1997 Aug 22;272(34):21616–21624. [PubMed]
  • Framson P, Bornstein P. A serum response element and a binding site for NF-Y mediate the serum response of the human thrombospondin 1 gene. J Biol Chem. 1993 Mar 5;268(7):4989–4996. [PubMed]
  • Hasan S, Koda T, Kakinuma M. An upstream NF-Y-binding site is required for transcriptional activation from the hst promoter in F9 embryonal carcinoma cells. J Biol Chem. 1994 Oct 7;269(40):25042–25048. [PubMed]
  • Dong JM, Smith P, Hall C, Lim L. Promoter region of the transcriptional unit for human alpha 1-chimaerin, a neuron-specific GTPase-activating protein for p21rac. Eur J Biochem. 1995 Feb 1;227(3):636–646. [PubMed]
  • Reed GE, Kirchner JE, Carr LG. NF-Y activates mouse tryptophan hydroxylase transcription. Brain Res. 1995 Jun 5;682(1-2):1–12. [PubMed]
  • Murakami Y, Ikeda U, Shimada K, Kawakami K. Promoter of the Na,K-ATPase alpha3 subunit gene is composed of cis elements to which NF-Y and Sp1/Sp3 bind in rat cardiocytes. Biochim Biophys Acta. 1997 Jun 26;1352(3):311–324. [PubMed]
  • Ishisaki A, Murayama T, Ballagi AE, Funa K. Nuclear factor Y controls the basal transcription activity of the mouse platelet-derived-growth-factor beta-receptor gene. Eur J Biochem. 1997 May 15;246(1):142–146. [PubMed]
  • Marziali G, Perrotti E, Ilari R, Testa U, Coccia EM, Battistini A. Transcriptional regulation of the ferritin heavy-chain gene: the activity of the CCAAT binding factor NF-Y is modulated in heme-treated Friend leukemia cells and during monocyte-to-macrophage differentiation. Mol Cell Biol. 1997 Mar;17(3):1387–1395. [PMC free article] [PubMed]
  • Schoneich J, Lee JL, Mansky P, Sheffery M, Yang SY. The pentanucleotide ATTGG, the "inverted CCAAT," is an essential element for HLA class I gene transcription. J Immunol. 1997 May 15;158(10):4788–4796. [PubMed]
  • Yu L, Wu Q, Yang CP, Horwitz SB. Coordination of transcription factors, NF-Y and C/EBP beta, in the regulation of the mdr1b promoter. Cell Growth Differ. 1995 Dec;6(12):1505–1512. [PubMed]
  • Goldsmith ME, Madden MJ, Morrow CS, Cowan KH. A Y-box consensus sequence is required for basal expression of the human multidrug resistance (mdr1) gene. J Biol Chem. 1993 Mar 15;268(8):5856–5860. [PubMed]
  • Boucher PD, Piechocki MP, Hines RN. Partial characterization of the human CYP1A1 negatively acting transcription factor and mutational analysis of its cognate DNA recognition sequence. Mol Cell Biol. 1995 Sep;15(9):5144–5151. [PMC free article] [PubMed]
  • Tommasi S, Swiderski PM, Tu Y, Kaplan BE, Pfeifer GP. Inhibition of transcription factor binding by ultraviolet-induced pyrimidine dimers. Biochemistry. 1996 Dec 10;35(49):15693–15703. [PubMed]
  • Roy B, Lee AS. Transduction of calcium stress through interaction of the human transcription factor CBF with the proximal CCAAT regulatory element of the grp78/BiP promoter. Mol Cell Biol. 1995 Apr;15(4):2263–2274. [PMC free article] [PubMed]
  • Greene JM, Larin Z, Taylor IC, Prentice H, Gwinn KA, Kingston RE. Multiple basal elements of a human hsp70 promoter function differently in human and rodent cell lines. Mol Cell Biol. 1987 Oct;7(10):3646–3655. [PMC free article] [PubMed]
  • Hunt C, Calderwood S. Characterization and sequence of a mouse hsp70 gene and its expression in mouse cell lines. Gene. 1990 Mar 15;87(2):199–204. [PubMed]
  • Bienz M, Pelham HR. Heat shock regulatory elements function as an inducible enhancer in the Xenopus hsp70 gene and when linked to a heterologous promoter. Cell. 1986 Jun 6;45(5):753–760. [PubMed]
  • Stewart MJ, Dipple KM, Stewart TR, Crabb DW. The role of nuclear factor NF-Y/CP1 in the transcriptional regulation of the human aldehyde dehydrogenase 2-encoding gene. Gene. 1996 Sep 16;173(2):155–161. [PubMed]
  • Ericsson J, Jackson SM, Kim JB, Spiegelman BM, Edwards PA. Identification of glycerol-3-phosphate acyltransferase as an adipocyte determination and differentiation factor 1- and sterol regulatory element-binding protein-responsive gene. J Biol Chem. 1997 Mar 14;272(11):7298–7305. [PubMed]
  • Jackson SM, Ericsson J, Osborne TF, Edwards PA. NF-Y has a novel role in sterol-dependent transcription of two cholesterogenic genes. J Biol Chem. 1995 Sep 15;270(37):21445–21448. [PubMed]
  • Osborne TF, Gil G, Goldstein JL, Brown MS. Operator constitutive mutation of 3-hydroxy-3-methylglutaryl coenzyme A reductase promoter abolishes protein binding to sterol regulatory element. J Biol Chem. 1988 Mar 5;263(7):3380–3387. [PubMed]
  • Guan G, Dai PH, Osborne TF, Kim JB, Shechter I. Multiple sequence elements are involved in the transcriptional regulation of the human squalene synthase gene. J Biol Chem. 1997 Apr 11;272(15):10295–10302. [PubMed]
  • Sato R, Inoue J, Kawabe Y, Kodama T, Takano T, Maeda M. Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2. J Biol Chem. 1996 Oct 25;271(43):26461–26464. [PubMed]
  • Serra E, Zemzoumi K, Trolet J, Capron A, Dissous C. Functional analysis of the Schistosoma mansoni 28 kDa glutathione S-transferase gene promoter: involvement of SMNF-Y transcription factor in multimeric complexes. Mol Biochem Parasitol. 1996 Dec 2;83(1):69–80. [PubMed]
  • Swendeman SL, Spielholz C, Jenkins NA, Gilbert DJ, Copeland NG, Sheffery M. Characterization of the genomic structure, chromosomal location, promoter, and development expression of the alpha-globin transcription factor CP2. J Biol Chem. 1994 Apr 15;269(15):11663–11671. [PubMed]
  • Danilition SL, Frederickson RM, Taylor CY, Miyamoto NG. Transcription factor binding and spacing constraints in the human beta-actin proximal promoter. Nucleic Acids Res. 1991 Dec 25;19(24):6913–6922. [PMC free article] [PubMed]
  • Quitschke WW, Lin ZY, DePonti-Zilli L, Paterson BM. The beta actin promoter. High levels of transcription depend upon a CCAAT binding factor. J Biol Chem. 1989 Jun 5;264(16):9539–9546. [PubMed]
  • Chang ZF, Liu CJ. Human thymidine kinase CCAAT-binding protein is NF-Y, whose A subunit expression is serum-dependent in human IMR-90 diploid fibroblasts. J Biol Chem. 1994 Jul 8;269(27):17893–17898. [PubMed]
  • Arcot SS, Flemington EK, Deininger PL. The human thymidine kinase gene promoter. Deletion analysis and specific protein binding. J Biol Chem. 1989 Feb 5;264(4):2343–2349. [PubMed]
  • Isaacs RJ, Harris AL, Hickson ID. Regulation of the human topoisomerase IIalpha gene promoter in confluence-arrested cells. J Biol Chem. 1996 Jul 12;271(28):16741–16747. [PubMed]
  • Herzog CE, Zwelling LA. Evaluation of a potential regulatory role for inverted CCAAT boxes in the human topoisomerase II alpha promoter. Biochem Biophys Res Commun. 1997 Mar 27;232(3):608–612. [PubMed]
  • Ng SW, Eder JP, Schnipper LE, Chan VT. Molecular cloning and characterization of the promoter for the Chinese hamster DNA topoisomerase II alpha gene. J Biol Chem. 1995 Oct 27;270(43):25850–25858. [PubMed]
  • Adachi N, Kobayashi M, Koyama H. Cell cycle-dependent regulation of the mouse DNA topoisomerase IIalpha gene promoter. Biochem Biophys Res Commun. 1997 Jan 3;230(1):105–109. [PubMed]
  • Zwicker J, Gross C, Lucibello FC, Truss M, Ehlert F, Engeland K, Müller R. Cell cycle regulation of cdc25C transcription is mediated by the periodic repression of the glutamine-rich activators NF-Y and Sp1. Nucleic Acids Res. 1995 Oct 11;23(19):3822–3830. [PMC free article] [PubMed]
  • Shimizu M, Ichikawa E, Inoue U, Nakamura T, Nakajima T, Nojima H, Okayama H, Oda K. The G1/S boundary-specific enhancer of the rat cdc2 promoter. Mol Cell Biol. 1995 May;15(5):2882–2892. [PMC free article] [PubMed]
  • North S, Espanel X, Tavitian B, Brun G, Gillet G. Two distinct regulatory elements control quail cdc2 transcription: possible involvement in the control of retinoblast differentiation. Cell Growth Differ. 1996 Mar;7(3):339–349. [PubMed]
  • Zwicker J, Lucibello FC, Wolfraim LA, Gross C, Truss M, Engeland K, Müller R. Cell cycle regulation of the cyclin A, cdc25C and cdc2 genes is based on a common mechanism of transcriptional repression. EMBO J. 1995 Sep 15;14(18):4514–4522. [PMC free article] [PubMed]
  • Huet X, Rech J, Plet A, Vié A, Blanchard JM. Cyclin A expression is under negative transcriptional control during the cell cycle. Mol Cell Biol. 1996 Jul;16(7):3789–3798. [PMC free article] [PubMed]
  • Katula KS, Wright KL, Paul H, Surman DR, Nuckolls FJ, Smith JW, Ting JP, Yates J, Cogswell JP. Cyclin-dependent kinase activation and S-phase induction of the cyclin B1 gene are linked through the CCAAT elements. Cell Growth Differ. 1997 Jul;8(7):811–820. [PubMed]
  • van Ginkel PR, Hsiao KM, Schjerven H, Farnham PJ. E2F-mediated growth regulation requires transcription factor cooperation. J Biol Chem. 1997 Jul 18;272(29):18367–18374. [PubMed]
  • Johnson DG, Ohtani K, Nevins JR. Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev. 1994 Jul 1;8(13):1514–1525. [PubMed]
  • Uchiumi T, Longo DL, Ferris DK. Cell cycle regulation of the human polo-like kinase (PLK) promoter. J Biol Chem. 1997 Apr 4;272(14):9166–9174. [PubMed]
  • Filatov D, Thelander L. Role of a proximal NF-Y binding promoter element in S phase-specific expression of mouse ribonucleotide reductase R2 gene. J Biol Chem. 1995 Oct 20;270(42):25239–25243. [PubMed]
  • DiLiberto M, Lai ZC, Fei H, Childs G. Developmental control of promoter-specific factors responsible for the embryonic activation and inactivation of the sea urchin early histone H3 gene. Genes Dev. 1989 Jul;3(7):973–985. [PubMed]
  • Lu CC, Yen TS. Activation of the hepatitis B virus S promoter by transcription factor NF-Y via a CCAAT element. Virology. 1996 Nov 15;225(2):387–394. [PubMed]
  • Zachow KR, Conklin KF. CArG, CCAAT, and CCAAT-like protein binding sites in avian retrovirus long terminal repeat enhancers. J Virol. 1992 Apr;66(4):1959–1970. [PMC free article] [PubMed]
  • Goding CR, Temperley SM, Fisher F. Multiple transcription factors interact with the adenovirus-2 EII-late promoter: evidence for a novel CCAAT recognition factor. Nucleic Acids Res. 1987 Oct 12;15(19):7761–7780. [PMC free article] [PubMed]
  • Huang L, Malone CL, Stinski MF. A human cytomegalovirus early promoter with upstream negative and positive cis-acting elements: IE2 negates the effect of the negative element, and NF-Y binds to the positive element. J Virol. 1994 Apr;68(4):2108–2117. [PMC free article] [PubMed]
  • O'Rourke D, O'Hare P. Mutually exclusive binding of two cellular factors within a critical promoter region of the gene for the IE110k protein of herpes simplex virus. J Virol. 1993 Dec;67(12):7201–7214. [PMC free article] [PubMed]
  • Moriuchi H, Moriuchi M, Cohen JI. The varicella-zoster virus immediate-early 62 promoter contains a negative regulatory element that binds transcriptional factor NF-Y. Virology. 1995 Dec 1;214(1):256–258. [PubMed]
  • Gu Z, Plaza S, Perros M, Cziepluch C, Rommelaere J, Cornelis JJ. NF-Y controls transcription of the minute virus of mice P4 promoter through interaction with an unusual binding site. J Virol. 1995 Jan;69(1):239–246. [PMC free article] [PubMed]
  • Kato M, Aoyama A, Naruse F, Kobayashi T, Tsukagoshi N. An Aspergillus nidulans nuclear protein, AnCP, involved in enhancement of Taka-amylase A gene expression, binds to the CCAAT-containing taaG2, amdS, and gatA promoters. Mol Gen Genet. 1997 Mar 26;254(2):119–126. [PubMed]
  • Olesen J, Hahn S, Guarente L. Yeast HAP2 and HAP3 activators both bind to the CYC1 upstream activation site, UAS2, in an interdependent manner. Cell. 1987 Dec 24;51(6):953–961. [PubMed]
  • Rosenkrantz M, Kell CS, Pennell EA, Devenish LJ. The HAP2,3,4 transcriptional activator is required for derepression of the yeast citrate synthase gene, CIT1. Mol Microbiol. 1994 Jul;13(1):119–131. [PubMed]
  • Trawick JD, Wright RM, Poyton RO. Transcription of yeast COX6, the gene for cytochrome c oxidase subunit VI, is dependent on heme and on the HAP2 gene. J Biol Chem. 1989 Apr 25;264(12):7005–7008. [PubMed]
  • Schneider JC, Guarente L. Regulation of the yeast CYT1 gene encoding cytochrome c1 by HAP1 and HAP2/3/4. Mol Cell Biol. 1991 Oct;11(10):4934–4942. [PMC free article] [PubMed]
  • Bowman SB, Zaman Z, Collinson LP, Brown AJ, Dawes IW. Positive regulation of the LPD1 gene of Saccharomyces cerevisiae by the HAP2/HAP3/HAP4 activation system. Mol Gen Genet. 1992 Jan;231(2):296–303. [PubMed]
  • Trueblood CE, Wright RM, Poyton RO. Differential regulation of the two genes encoding Saccharomyces cerevisiae cytochrome c oxidase subunit V by heme and the HAP2 and REO1 genes. Mol Cell Biol. 1988 Oct;8(10):4537–4540. [PMC free article] [PubMed]
  • Keng T, Guarente L. Constitutive expression of the yeast HEM1 gene is actually a composite of activation and repression. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9113–9117. [PMC free article] [PubMed]
  • Dang VD, Valens M, Bolotin-Fukuhara M, Daignan-Fornier B. Cloning of the ASN1 and ASN2 genes encoding asparagine synthetases in Saccharomyces cerevisiae: differential regulation by the CCAAT-box-binding factor. Mol Microbiol. 1996 Nov;22(4):681–692. [PubMed]
  • Dang VD, Bohn C, Bolotin-Fukuhara M, Daignan-Fornier B. The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J Bacteriol. 1996 Apr;178(7):1842–1849. [PMC free article] [PubMed]
  • Flattery-O'Brien JA, Grant CM, Dawes IW. Stationary-phase regulation of the Saccharomyces cerevisiae SOD2 gene is dependent on additive effects of HAP2/3/4/5- and STRE-binding elements. Mol Microbiol. 1997 Jan;23(2):303–312. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...