• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. Jan 15, 1998; 26(2): 391–406.
PMCID: PMC147275

Similarities and differences among 105 members of the Int family of site-specific recombinases.


Alignments of 105 site-specific recombinases belonging to the Int family of proteins identified extended areas of similarity and three types of structural differences. In addition to the previously recognized conservation of the tetrad R-H-R-Y, located in boxes I and II, several newly identified sequence patches include charged amino acids that are highly conserved and a specific pattern of buried residues contributing to the overall protein fold. With some notable exceptions, unconserved regions correspond to loops in the crystal structures of the catalytic domains of lambda Int (Int c170) and HP1 Int (HPC) and of the recombinases XerD and Cre. Two structured regions also harbor some pronounced differences. The first comprises beta-sheets 4 and 5, alpha-helix D and the adjacent loop connecting it to alpha-helix E: two Ints of phages infecting thermophilic bacteria are missing this region altogether; the crystal structures of HPC, XerD and Cre reveal a lack of beta-sheets 4 and 5; Cre displays two additional beta-sheets following alpha-helix D; five recombinases carry large insertions. The second involves the catalytic tyrosine and is seen in a comparison of the four crystal structures. The yeast recombinases can theoretically be fitted to the Int fold, but the overall differences, involving changes in spacing as well as in motif structure, are more substantial than seen in most other proteins. The phenotypes of mutations compiled from several proteins are correlated with the available structural information and structure-function relationships are discussed. In addition, a few prokaryotic and eukaryotic enzymes with partial homology with the Int family of recombinases may be distantly related, either through divergent or convergent evolution. These include a restriction enzyme and a subgroup of eukaryotic RNA helicases (D-E-A-D proteins).

Full Text

The Full Text of this article is available as a PDF (2.6M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Tirumalai RS, Healey E, Landy A. The catalytic domain of lambda site-specific recombinase. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6104–6109. [PMC free article] [PubMed]
  • Kwon HJ, Tirumalai R, Landy A, Ellenberger T. Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science. 1997 Apr 4;276(5309):126–131. [PMC free article] [PubMed]
  • Hickman AB, Waninger S, Scocca JJ, Dyda F. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution. Cell. 1997 Apr 18;89(2):227–237. [PubMed]
  • Subramanya HS, Arciszewska LK, Baker RA, Bird LE, Sherratt DJ, Wigley DB. Crystal structure of the site-specific recombinase, XerD. EMBO J. 1997 Sep 1;16(17):5178–5187. [PMC free article] [PubMed]
  • Guo F, Gopaul DN, van Duyne GD. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature. 1997 Sep 4;389(6646):40–46. [PubMed]
  • Argos P, Landy A, Abremski K, Egan JB, Haggard-Ljungquist E, Hoess RH, Kahn ML, Kalionis B, Narayana SV, Pierson LS, 3rd, et al. The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J. 1986 Feb;5(2):433–440. [PMC free article] [PubMed]
  • Pargellis CA, Nunes-Düby SE, de Vargas LM, Landy A. Suicide recombination substrates yield covalent lambda integrase-DNA complexes and lead to identification of the active site tyrosine. J Biol Chem. 1988 Jun 5;263(16):7678–7685. [PubMed]
  • Utatsu I, Sakamoto S, Imura T, Toh-e A. Yeast plasmids resembling 2 micron DNA: regional similarities and diversities at the molecular level. J Bacteriol. 1987 Dec;169(12):5537–5545. [PMC free article] [PubMed]
  • Abremski KE, Hoess RH. Evidence for a second conserved arginine residue in the integrase family of recombination proteins. Protein Eng. 1992 Jan;5(1):87–91. [PubMed]
  • Blakely GW, Sherratt DJ. Cis and trans in site-specific recombination. Mol Microbiol. 1996 Apr;20(1):234–237. [PubMed]
  • Esposito D, Scocca JJ. The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res. 1997 Sep 15;25(18):3605–3614. [PMC free article] [PubMed]
  • Hoess RH, Foeller C, Bidwell K, Landy A. Site-specific recombination functions of bacteriophage lambda: DNA sequence of regulatory regions and overlapping structural genes for Int and Xis. Proc Natl Acad Sci U S A. 1980 May;77(5):2482–2486. [PMC free article] [PubMed]
  • Limberger RJ, Campbell AM. Functional elements of DNA upstream from the integrase operon that are conserved in bacteriophages 434 and lambda. Gene. 1987;61(2):135–144. [PubMed]
  • Yagil E, Dolev S, Oberto J, Kislev N, Ramaiah N, Weisberg RA. Determinants of site-specific recombination in the lambdoid coliphage HK022. An evolutionary change in specificity. J Mol Biol. 1989 Jun 20;207(4):695–717. [PubMed]
  • Baker J, Limberger R, Schneider SJ, Campbell A. Recombination and modular exchange in the genesis of new lambdoid phages. New Biol. 1991 Mar;3(3):297–308. [PubMed]
  • Kalionis B, Dodd IB, Egan JB. Control of gene expression in the P2-related template coliphages. III. DNA sequence of the major control region of phage 186. J Mol Biol. 1986 Sep 20;191(2):199–209. [PubMed]
  • Yu A, Bertani LE, Haggård-Ljungquist E. Control of prophage integration and excision in bacteriophage P2: nucleotide sequences of the int gene and att sites. Gene. 1989 Aug 1;80(1):1–11. [PubMed]
  • Pierson LS, 3rd, Kahn ML. Integration of satellite bacteriophage P4 in Escherichia coli. DNA sequences of the phage and host regions involved in site-specific recombination. J Mol Biol. 1987 Aug 5;196(3):487–496. [PubMed]
  • Sun J, Inouye M, Inouye S. Association of a retroelement with a P4-like cryptic prophage (retronphage phi R73) integrated into the selenocystyl tRNA gene of Escherichia coli. J Bacteriol. 1991 Jul;173(13):4171–4181. [PMC free article] [PubMed]
  • Burland V, Plunkett G, 3rd, Sofia HJ, Daniels DL, Blattner FR. Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105–2119. [PMC free article] [PubMed]
  • Kirby JE, Trempy JE, Gottesman S. Excision of a P4-like cryptic prophage leads to Alp protease expression in Escherichia coli. J Bacteriol. 1994 Apr;176(7):2068–2081. [PMC free article] [PubMed]
  • Leong JM, Nunes-Düby SE, Oser AB, Lesser CF, Youderian P, Susskind MM, Landy A. Structural and regulatory divergence among site-specific recombination genes of lambdoid phage. J Mol Biol. 1986 Jun 20;189(4):603–616. [PubMed]
  • Clark CA, Beltrame J, Manning PA. The oac gene encoding a lipopolysaccharide O-antigen acetylase maps adjacent to the integrase-encoding gene on the genome of Shigella flexneri bacteriophage Sf6. Gene. 1991 Oct 30;107(1):43–52. [PubMed]
  • Lindsey DF, Mullin DA, Walker JR. Characterization of the cryptic lambdoid prophage DLP12 of Escherichia coli and overlap of the DLP12 integrase gene with the tRNA gene argU. J Bacteriol. 1989 Nov;171(11):6197–6205. [PMC free article] [PubMed]
  • Muramatsu S, Mizuno T. Nucleotide sequence of the region encompassing the int gene of a cryptic prophage and the dna Y gene flanked by a curved DNA sequence of Escherichia coli K12. Mol Gen Genet. 1990 Jan;220(2):325–328. [PubMed]
  • Cheetham BF, Tattersall DB, Bloomfield GA, Rood JI, Katz ME. Identification of a gene encoding a bacteriophage-related integrase in a vap region of the Dichelobacter nodosus genome. Gene. 1995 Aug 30;162(1):53–58. [PubMed]
  • Goodman SD, Scocca JJ. Nucleotide sequence and expression of the gene for the site-specific integration protein from bacteriophage HP1 of Haemophilus influenzae. J Bacteriol. 1989 Aug;171(8):4232–4240. [PMC free article] [PubMed]
  • Lillehaug D, Birkeland NK. Characterization of genetic elements required for site-specific integration of the temperate lactococcal bacteriophage phi LC3 and construction of integration-negative phi LC3 mutants. J Bacteriol. 1993 Mar;175(6):1745–1755. [PMC free article] [PubMed]
  • van de Guchte M, Daly C, Fitzgerald GF, Arendt EK. Identification of int and attP on the genome of lactococcal bacteriophage Tuc2009 and their use for site-specific plasmid integration in the chromosome of Tuc2009-resistant Lactococcus lactis MG1363. Appl Environ Microbiol. 1994 Jul;60(7):2324–2329. [PMC free article] [PubMed]
  • Boyce JD, Davidson BE, Hillier AJ. Identification of prophage genes expressed in lysogens of the Lactococcus lactis bacteriophage BK5-T. Appl Environ Microbiol. 1995 Nov;61(11):4099–4104. [PMC free article] [PubMed]
  • Fremaux C, De Antoni GL, Raya RR, Klaenhammer TR. Genetic organization and sequence of the region encoding integrative functions from Lactobacillus gasseri temperate bacteriophage phi adh. Gene. 1993 Apr 15;126(1):61–66. [PubMed]
  • Dupont L, Boizet-Bonhoure B, Coddeville M, Auvray F, Ritzenthaler P. Characterization of genetic elements required for site-specific integration of Lactobacillus delbrueckii subsp. bulgaricus bacteriophage mv4 and construction of an integration-proficient vector for Lactobacillus plantarum. J Bacteriol. 1995 Feb;177(3):586–595. [PMC free article] [PubMed]
  • Kodaira KI, Oki M, Kakikawa M, Watanabe N, Hirakawa M, Yamada K, Taketo A. Genome structure of the Lactobacillus temperate phage phi g1e: the whole genome sequence and the putative promoter/repressor system. Gene. 1997 Mar 10;187(1):45–53. [PubMed]
  • Lee MH, Pascopella L, Jacobs WR, Jr, Hatfull GF. Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3111–3115. [PMC free article] [PubMed]
  • Hatfull GF, Sarkis GJ. DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol Microbiol. 1993 Feb;7(3):395–405. [PubMed]
  • Haeseleer F, Pollet JF, Bollen A, Jacobs P. Molecular cloning and sequencing of the attachment site and integrase gene of the temperate mycobacteriophage FRAT1. Nucleic Acids Res. 1992 Mar 25;20(6):1420–1420. [PMC free article] [PubMed]
  • Maniloff J, Kampo GJ, Dascher CC. Sequence analysis of a unique temperature phage: mycoplasma virus L2. Gene. 1994 Apr 8;141(1):1–8. [PubMed]
  • Tojo N, Sanmiya K, Sugawara H, Inouye S, Komano T. Integration of bacteriophage Mx8 into the Myxococcus xanthus chromosome causes a structural alteration at the C-terminal region of the IntP protein. J Bacteriol. 1996 Jul;178(14):4004–4011. [PMC free article] [PubMed]
  • Ye ZH, Lee CY. Nucleotide sequence and genetic characterization of staphylococcal bacteriophage L54a int and xis genes. J Bacteriol. 1989 Aug;171(8):4146–4153. [PMC free article] [PubMed]
  • Ye ZH, Buranen SL, Lee CY. Sequence analysis and comparison of int and xis genes from staphylococcal bacteriophages L54a and phi 11. J Bacteriol. 1990 May;172(5):2568–2575. [PMC free article] [PubMed]
  • Carroll JD, Cafferkey MT, Coleman DC. Serotype F double- and triple-converting phage insertionally inactivate the Staphylococcus aureus beta-toxin determinant by a common molecular mechanism. FEMS Microbiol Lett. 1993 Jan 15;106(2):147–155. [PubMed]
  • McShan WM, Tang YF, Ferretti JJ. Bacteriophage T12 of Streptococcus pyogenes integrates into the gene encoding a serine tRNA. Mol Microbiol. 1997 Feb;23(4):719–728. [PubMed]
  • Hayashi T, Matsumoto H, Ohnishi M, Terawaki Y. Molecular analysis of a cytotoxin-converting phage, phi CTX, of Pseudomonas aeruginosa: structure of the attP-cos-ctx region and integration into the serine tRNA gene. Mol Microbiol. 1993 Mar;7(5):657–667. [PubMed]
  • Gabriel K, Schmid H, Schmidt U, Rausch H. The actinophage RP3 DNA integrates site-specifically into the putative tRNA(Arg)(AGG) gene of Streptomyces rimosus. Nucleic Acids Res. 1995 Jan 11;23(1):58–63. [PMC free article] [PubMed]
  • Bruttin A, Desiere F, Lucchini S, Foley S, Brüssow H. Characterization of the lysogeny DNA module from the temperate Streptococcus thermophilus bacteriophage phi Sfi21. Virology. 1997 Jun 23;233(1):136–148. [PubMed]
  • Palm P, Schleper C, Grampp B, Yeats S, McWilliam P, Reiter WD, Zillig W. Complete nucleotide sequence of the virus SSV1 of the archaebacterium Sulfolobus shibatae. Virology. 1991 Nov;185(1):242–250. [PubMed]
  • McLachlin JR, Miller LK. Identification and characterization of vlf-1, a baculovirus gene involved in very late gene expression. J Virol. 1994 Dec;68(12):7746–7756. [PMC free article] [PubMed]
  • Colloms SD, Sykora P, Szatmari G, Sherratt DJ. Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases. J Bacteriol. 1990 Dec;172(12):6973–6980. [PMC free article] [PubMed]
  • Blakely G, May G, McCulloch R, Arciszewska LK, Burke M, Lovett ST, Sherratt DJ. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell. 1993 Oct 22;75(2):351–361. [PubMed]
  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. [PubMed]
  • Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997 Aug 7;388(6642):539–547. [PubMed]
  • Becker J, Brendel M. Molecular characterization of the xerC gene of Lactobacillus leichmannii encoding a site-specific recombinase and two adjacent heat shock genes. Curr Microbiol. 1996 Apr;32(4):232–236. [PubMed]
  • Philipp WJ, Poulet S, Eiglmeier K, Pascopella L, Balasubramanian V, Heym B, Bergh S, Bloom BR, Jacobs WR, Jr, Cole ST. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3132–3137. [PMC free article] [PubMed]
  • Höfte M, Dong Q, Kourambas S, Krishnapillai V, Sherratt D, Mergeay M. The sss gene product, which affects pyoverdin production in Pseudomonas aeruginosa 7NSK2, is a site-specific recombinase. Mol Microbiol. 1994 Dec;14(5):1011–1020. [PubMed]
  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. [PubMed]
  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996 Jun 30;3(3):109–136. [PubMed]
  • Wolff G, Plante I, Lang BF, Kück U, Burger G. Complete sequence of the mitochondrial DNA of the chlorophyte alga Prototheca wickerhamii. Gene content and genome organization. J Mol Biol. 1994 Mar 18;237(1):75–86. [PubMed]
  • Disqué-Kochem C, Seidel U, Helsberg M, Eichenlaub R. The repeated sequences (incB) preceding the protein E gene of plasmid mini-F are essential for replication. Mol Gen Genet. 1986 Jan;202(1):132–135. [PubMed]
  • Thumm G, Olschläger T, Braun V. Plasmid pColBM-Cl139 does not encode a colicin lysis protein but contains sequences highly homologous to the D protein (resolvase) and the oriV region of the miniF plasmid. Plasmid. 1988 Jul;20(1):75–82. [PubMed]
  • Krause M, Guiney DG. Identification of a multimer resolution system involved in stabilization of the Salmonella dublin virulence plasmid pSDL2. J Bacteriol. 1991 Sep;173(18):5754–5762. [PMC free article] [PubMed]
  • Sternberg N, Sauer B, Hoess R, Abremski K. Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation. J Mol Biol. 1986 Jan 20;187(2):197–212. [PubMed]
  • Hall RM, Vockler C. The region of the IncN plasmid R46 coding for resistance to beta-lactam antibiotics, streptomycin/spectinomycin and sulphonamides is closely related to antibiotic resistance segments found in IncW plasmids and in Tn21-like transposons. Nucleic Acids Res. 1987 Sep 25;15(18):7491–7501. [PMC free article] [PubMed]
  • Osano E, Arakawa Y, Wacharotayankun R, Ohta M, Horii T, Ito H, Yoshimura F, Kato N. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother. 1994 Jan;38(1):71–78. [PMC free article] [PubMed]
  • Brassard S, Paquet H, Roy PH. A transposon-like sequence adjacent to the AccI restriction-modification operon. Gene. 1995 May 19;157(1-2):69–72. [PubMed]
  • Shoemaker NB, Wang GR, Salyers AA. The Bacteroides mobilizable insertion element, NBU1, integrates into the 3' end of a Leu-tRNA gene and has an integrase that is a member of the lambda integrase family. J Bacteriol. 1996 Jun;178(12):3594–3600. [PMC free article] [PubMed]
  • Kim SR, Komano T. Cloning and nucleotide sequence of the ColIb shufflon. Plasmid. 1989 Sep;22(2):180–184. [PubMed]
  • Kubo A, Kusukawa A, Komano T. Nucleotide sequence of the rci gene encoding shufflon-specific DNA recombinase in the IncI1 plasmid R64: homology to the site-specific recombinases of integrase family. Mol Gen Genet. 1988 Jul;213(1):30–35. [PubMed]
  • Mahillon J, Seurinck J. Complete nucleotide sequence of pGI2, a Bacillus thuringiensis plasmid containing Tn4430. Nucleic Acids Res. 1988 Dec 23;16(24):11827–11828. [PMC free article] [PubMed]
  • Baum JA. Tn5401, a new class II transposable element from Bacillus thuringiensis. J Bacteriol. 1994 May;176(10):2835–2845. [PMC free article] [PubMed]
  • Rauch PJ, de Vos WM. Identification and characterization of genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. J Bacteriol. 1994 Apr;176(8):2165–2171. [PMC free article] [PubMed]
  • Kholodii GY, Yurieva OV, Gorlenko Z, Mindlin SZ, Bass IA, Lomovskaya OL, Kopteva AV, Nikiforov VG. Tn5041: a chimeric mercury resistance transposon closely related to the toluene degradative transposon Tn4651. Microbiology. 1997 Aug;143(Pt 8):2549–2556. [PubMed]
  • Poyart-Salmeron C, Trieu-Cuot P, Carlier C, Courvalin P. Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site-specific recombinases. EMBO J. 1989 Aug;8(8):2425–2433. [PMC free article] [PubMed]
  • Su YA, Clewell DB. Characterization of the left 4 kb of conjugative transposon Tn916: determinants involved in excision. Plasmid. 1993 Nov;30(3):234–250. [PubMed]
  • Murphy E, Huwyler L, de Freire Bastos M do C. Transposon Tn554: complete nucleotide sequence and isolation of transposition-defective and antibiotic-sensitive mutants. EMBO J. 1985 Dec 1;4(12):3357–3365. [PMC free article] [PubMed]
  • Chow WY, Wang CK, Lee WL, Kung SS, Wu YM. Molecular characterization of a deletion-prone region of plasmid pAE1 of Alcaligenes eutrophus H1. J Bacteriol. 1995 Jul;177(14):4157–4161. [PMC free article] [PubMed]
  • Walton DK, Gendel SM, Atherly AG. Nucleotide sequence of the replication region of the Nostoc PCC 7524 plasmid pDU1. Nucleic Acids Res. 1992 Sep 11;20(17):4660–4660. [PMC free article] [PubMed]
  • Vrijbloed JW, Madoń J, Dijkhuizen L. A plasmid from the methylotrophic actinomycete Amycolatopsis methanolica capable of site-specific integration. J Bacteriol. 1994 Nov;176(22):7087–7090. [PMC free article] [PubMed]
  • Hagège J, Boccard F, Smokvina T, Pernodet JL, Friedmann A, Guérineau M. Identification of a gene encoding the replication initiator protein of the Streptomyces integrating element, pSAM2. Plasmid. 1994 Mar;31(2):166–183. [PubMed]
  • Brown DP, Idler KB, Backer DM, Donadio S, Katz L. Characterization of the genes and attachment sites for site-specific integration of plasmid pSE101 in Saccharopolyspora erythraea and Streptomyces lividans. Mol Gen Genet. 1994 Jan;242(2):185–193. [PubMed]
  • Brown DP, Idler KB, Katz L. Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J Bacteriol. 1990 Apr;172(4):1877–1888. [PMC free article] [PubMed]
  • Brasch MA, Pettis GS, Lee SC, Cohen SN. Localization and nucleotide sequences of genes mediating site-specific recombination of the SLP1 element in Streptomyces lividans. J Bacteriol. 1993 May;175(10):3067–3074. [PMC free article] [PubMed]
  • Carrasco CD, Buettner JA, Golden JW. Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):791–795. [PMC free article] [PubMed]
  • Klemm P. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J. 1986 Jun;5(6):1389–1393. [PMC free article] [PubMed]
  • Bahrani FK, Mobley HL. Proteus mirabilis MR/P fimbrial operon: genetic organization, nucleotide sequence, and conditions for expression. J Bacteriol. 1994 Jun;176(11):3412–3419. [PMC free article] [PubMed]
  • Hartley JL, Donelson JE. Nucleotide sequence of the yeast plasmid. Nature. 1980 Aug 28;286(5776):860–865. [PubMed]
  • Toh-e A, Utatsu I. Physical and functional structure of a yeast plasmid, pSB3, isolated from Zygosaccharomyces bisporus. Nucleic Acids Res. 1985 Jun 25;13(12):4267–4283. [PMC free article] [PubMed]
  • Araki H, Jearnpipatkul A, Tatsumi H, Sakurai T, Ushio K, Muta T, Oshima Y. Molecular and functional organization of yeast plasmid pSR1. J Mol Biol. 1985 Mar 20;182(2):191–203. [PubMed]
  • Chen XJ, Saliola M, Falcone C, Bianchi MM, Fukuhara H. Sequence organization of the circular plasmid pKD1 from the yeast Kluyveromyces drosophilarum. Nucleic Acids Res. 1986 Jun 11;14(11):4471–4481. [PMC free article] [PubMed]
  • Sadowski P. Site-specific recombinases: changing partners and doing the twist. J Bacteriol. 1986 Feb;165(2):341–347. [PMC free article] [PubMed]
  • Sadowski PD. Site-specific genetic recombination: hops, flips, and flops. FASEB J. 1993 Jun;7(9):760–767. [PubMed]
  • Recchia GD, Hall RM. Gene cassettes: a new class of mobile element. Microbiology. 1995 Dec;141(Pt 12):3015–3027. [PubMed]
  • Kikuchi Y, Nash HA. Nicking-closing activity associated with bacteriophage lambda int gene product. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3760–3764. [PMC free article] [PubMed]
  • Landy A. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem. 1989;58:913–949. [PubMed]
  • Stark WM, Boocock MR, Sherratt DJ. Catalysis by site-specific recombinases. Trends Genet. 1992 Dec;8(12):432–439. [PubMed]
  • Jayaram M. Phosphoryl transfer in Flp recombination: a template for strand transfer mechanisms. Trends Biochem Sci. 1994 Feb;19(2):78–82. [PubMed]
  • Barton GJ. Protein multiple sequence alignment and flexible pattern matching. Methods Enzymol. 1990;183:403–428. [PubMed]
  • Sirois S, Szatmari G. Detection of XerC and XerD recombinases in gram-negative bacteria of the family Enterobacteriaceae. J Bacteriol. 1995 Jul;177(14):4183–4186. [PMC free article] [PubMed]
  • Madon J, Moretti P, Hütter R. Site-specific integration and excision of pMEA100 in Nocardia mediterranei. Mol Gen Genet. 1987 Sep;209(2):257–264. [PubMed]
  • Blattner FR, Plunkett G, 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, et al. The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453–1462. [PubMed]
  • Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X. Molecular basis of symbiosis between Rhizobium and legumes. Nature. 1997 May 22;387(6631):394–401. [PubMed]
  • Schenk-Gröninger R, Becker J, Brendel M. Cloning, sequencing, and characterizing the Lactobacillus leichmannii pyrC gene encoding dihydroorotase. Biochimie. 1995;77(4):265–272. [PubMed]
  • Bhagwat AS, Johnson B, Weule K, Roberts RJ. Primary sequence of the EcoRII endonuclease and properties of its fusions with beta-galactosidase. J Biol Chem. 1990 Jan 15;265(2):767–773. [PubMed]
  • Umeda M, Ohtsubo E. Four types of IS1 with differences in nucleotide sequence reside in the Escherichia coli K-12 chromosome. Gene. 1991 Feb 1;98(1):1–5. [PubMed]
  • Yura T, Mori H, Nagai H, Nagata T, Ishihama A, Fujita N, Isono K, Mizobuchi K, Nakata A. Systematic sequencing of the Escherichia coli genome: analysis of the 0-2.4 min region. Nucleic Acids Res. 1992 Jul 11;20(13):3305–3308. [PMC free article] [PubMed]
  • Linder P, Slonimski PP. Sequence of the genes TIF1 and TIF2 from Saccharomyces cerevisiae coding for a translation initiation factor. Nucleic Acids Res. 1988 Nov 11;16(21):10359–10359. [PMC free article] [PubMed]
  • Johnston M, Andrews S, Brinkman R, Cooper J, Ding H, Dover J, Du Z, Favello A, Fulton L, Gattung S, et al. Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science. 1994 Sep 30;265(5181):2077–2082. [PubMed]
  • Kim NS, Kato T, Abe N, Kato S. Nucleotide sequence of human cDNA encoding eukaryotic initiation factor 4AI. Nucleic Acids Res. 1993 Apr 25;21(8):2012–2012. [PMC free article] [PubMed]
  • Bannam TL, Crellin PK, Rood JI. Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from Clostridium perfringens: the TnpX site-specific recombinase excises a circular transposon molecule. Mol Microbiol. 1995 May;16(3):535–551. [PubMed]
  • Le Marrec C, Moreau S, Loury S, Blanco C, Trautwetter A. Genetic characterization of site-specific integration functions of phi AAU2 infecting "Arthrobacter aureus" C70. J Bacteriol. 1996 Apr;178(7):1996–2004. [PMC free article] [PubMed]
  • Gregg K, Kennedy BG, Klieve AV. Cloning and DNA sequence analysis of the region containing attP of the temperate phage phi AR29 of Prevotella ruminicola AR29. Microbiology. 1994 Aug;140(Pt 8):2109–2114. [PubMed]
  • Rohozinski J, Goorha R. A frog virus 3 gene codes for a protein containing the motif characteristic of the INT family of integrases. Virology. 1992 Feb;186(2):693–700. [PubMed]
  • Bernstein RM, Schluter SF, Bernstein H, Marchalonis JJ. Primordial emergence of the recombination activating gene 1 (RAG1): sequence of the complete shark gene indicates homology to microbial integrases. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9454–9459. [PMC free article] [PubMed]
  • Schatz DG, Oettinger MA, Baltimore D. The V(D)J recombination activating gene, RAG-1. Cell. 1989 Dec 22;59(6):1035–1048. [PubMed]
  • Matsunami N, Hamaguchi Y, Yamamoto Y, Kuze K, Kangawa K, Matsuo H, Kawaichi M, Honjo T. A protein binding to the J kappa recombination sequence of immunoglobulin genes contains a sequence related to the integrase motif. Nature. 1989 Dec 21;342(6252):934–937. [PubMed]
  • Amakawa R, Jing W, Ozawa K, Matsunami N, Hamaguchi Y, Matsuda F, Kawaichi M, Honjo T. Human Jk recombination signal binding protein gene (IGKJRB): comparison with its mouse homologue. Genomics. 1993 Aug;17(2):306–315. [PubMed]
  • Furukawa T, Kawaichi M, Matsunami N, Ryo H, Nishida Y, Honjo T. The Drosophila RBP-J kappa gene encodes the binding protein for the immunoglobulin J kappa recombination signal sequence. J Biol Chem. 1991 Dec 5;266(34):23334–23340. [PubMed]
  • Crellin PK, Rood JI. The resolvase/invertase domain of the site-specific recombinase TnpX is functional and recognizes a target sequence that resembles the junction of the circular form of the Clostridium perfringens transposon Tn4451. J Bacteriol. 1997 Aug;179(16):5148–5156. [PMC free article] [PubMed]
  • Hoess R, Abremski K, Irwin S, Kendall M, Mack A. DNA specificity of the Cre recombinase resides in the 25 kDa carboxyl domain of the protein. J Mol Biol. 1990 Dec 20;216(4):873–882. [PubMed]
  • Chen JW, Evans BR, Yang SH, Teplow DB, Jayaram M. Domain of a yeast site-specific recombinase (Flp) that recognizes its target site. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):5944–5948. [PMC free article] [PubMed]
  • Wierzbicki A, Kendall M, Abremski K, Hoess R. A mutational analysis of the bacteriophage P1 recombinase Cre. J Mol Biol. 1987 Jun 20;195(4):785–794. [PubMed]
  • Parsons RL, Prasad PV, Harshey RM, Jayaram M. Step-arrest mutants of FLP recombinase: implications for the catalytic mechanism of DNA recombination. Mol Cell Biol. 1988 Aug;8(8):3303–3310. [PMC free article] [PubMed]
  • Amin AA, Sadowski PD. Synthesis of an enzymatically active FLP recombinase in vitro: search for a DNA-binding domain. Mol Cell Biol. 1989 May;9(5):1987–1995. [PMC free article] [PubMed]
  • Han YW, Gumport RI, Gardner JF. Mapping the functional domains of bacteriophage lambda integrase protein. J Mol Biol. 1994 Jan 21;235(3):908–925. [PubMed]
  • Wu Z, Gumport RI, Gardner JF. Genetic analysis of second-site revertants of bacteriophage lambda integrase mutants. J Bacteriol. 1997 Jun;179(12):4030–4038. [PMC free article] [PubMed]
  • Chen JW, Lee J, Jayaram M. DNA cleavage in trans by the active site tyrosine during Flp recombination: switching protein partners before exchanging strands. Cell. 1992 May 15;69(4):647–658. [PubMed]
  • Shaikh AC, Sadowski PD. The Cre recombinase cleaves the lox site in trans. J Biol Chem. 1997 Feb 28;272(9):5695–5702. [PubMed]
  • Nunes-Düby SE, Tirumalai RS, Dorgai L, Yagil E, Weisberg RA, Landy A. Lambda integrase cleaves DNA in cis. EMBO J. 1994 Sep 15;13(18):4421–4430. [PMC free article] [PubMed]
  • Han YW, Gumport RI, Gardner JF. Complementation of bacteriophage lambda integrase mutants: evidence for an intersubunit active site. EMBO J. 1993 Dec;12(12):4577–4584. [PMC free article] [PubMed]
  • Blakely GW, Davidson AO, Sherratt DJ. Binding and cleavage of nicked substrates by site-specific recombinases XerC and XerD. J Mol Biol. 1997 Jan 10;265(1):30–39. [PubMed]
  • Colloms SD, McCulloch R, Grant K, Neilson L, Sherratt DJ. Xer-mediated site-specific recombination in vitro. EMBO J. 1996 Mar 1;15(5):1172–1181. [PMC free article] [PubMed]
  • Jayaram M. The cis-trans paradox of integrase. Science. 1997 Apr 4;276(5309):49–51. [PubMed]
  • Saxena P, Whang I, Voziyanov Y, Harkey C, Argos P, Jayaram M, Dandekar T. Probing Flp: a new approach to analyze the structure of a DNA recognizing protein by combining the genetic algorithm, mutagenesis and non-canonical DNA target sites. Biochim Biophys Acta. 1997 Jul 18;1340(2):187–204. [PubMed]
  • Kulpa J, Dixon JE, Pan G, Sadowski PD. Mutations of the FLP recombinase gene that cause a deficiency in DNA bending and strand cleavage. J Biol Chem. 1993 Jan 15;268(2):1101–1108. [PubMed]
  • Pan G, Luetke K, Sadowski PD. Mechanism of cleavage and ligation by FLP recombinase: classification of mutations in FLP protein by in vitro complementation analysis. Mol Cell Biol. 1993 Jun;13(6):3167–3175. [PMC free article] [PubMed]
  • MacWilliams MP, Gumport RI, Gardner JF. Genetic analysis of the bacteriophage lambda attL nucleoprotein complex. Genetics. 1996 Jul;143(3):1069–1079. [PMC free article] [PubMed]
  • Dorgai L, Yagil E, Weisberg RA. Identifying determinants of recombination specificity: construction and characterization of mutant bacteriophage integrases. J Mol Biol. 1995 Sep 15;252(2):178–188. [PubMed]
  • Segall AM, Nash HA. Architectural flexibility in lambda site-specific recombination: three alternate conformations channel the attL site into three distinct pathways. Genes Cells. 1996 May;1(5):453–463. [PubMed]
  • Hoess R, Wierzbicki A, Abremski K. Isolation and characterization of intermediates in site-specific recombination. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6840–6844. [PMC free article] [PubMed]
  • Barker RF, Harberd NP, Jarvis MG, Flavell RB. Structure and evolution of the intergenic region in a ribosomal DNA repeat unit of wheat. J Mol Biol. 1988 May 5;201(1):1–17. [PubMed]
  • Jayaram M, Crain KL, Parsons RL, Harshey RM. Holliday junctions in FLP recombination: resolution by step-arrest mutants of FLP protein. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7902–7906. [PMC free article] [PubMed]
  • Lebreton B, Prasad PV, Jayaram M, Youderian P. Mutations that improve the binding of yeast FLP recombinase to its substrate. Genetics. 1988 Mar;118(3):393–400. [PMC free article] [PubMed]
  • Schwartz CJ, Sadowski PD. FLP recombinase of the 2 microns circle plasmid of Saccharomyces cerevisiae bends its DNA target. Isolation of FLP mutants defective in DNA bending. J Mol Biol. 1989 Feb 20;205(4):647–658. [PubMed]
  • Friesen H, Sadowski PD. Mutagenesis of a conserved region of the gene encoding the FLP recombinase of Saccharomyces cerevisiae. A role for arginine 191 in binding and ligation. J Mol Biol. 1992 May 20;225(2):313–326. [PubMed]
  • Serre MC, Jayaram M. Half-site strand transfer by step-arrest mutants of yeast site-specific recombinase Flp. J Mol Biol. 1992 Jun 5;225(3):643–649. [PubMed]
  • Pan G, Luetke K, Juby CD, Brousseau R, Sadowski P. Ligation of synthetic activated DNA substrates by site-specific recombinases and topoisomerase I. J Biol Chem. 1993 Feb 15;268(5):3683–3689. [PubMed]
  • Parsons RL, Evans BR, Zheng L, Jayaram M. Functional analysis of Arg-308 mutants of Flp recombinase. Possible role of Arg-308 in coupling substrate binding to catalysis. J Biol Chem. 1990 Mar 15;265(8):4527–4533. [PubMed]
  • Chen JW, Evans BR, Yang SH, Araki H, Oshima Y, Jayaram M. Functional analysis of box I mutations in yeast site-specific recombinases Flp and R: pairwise complementation with recombinase variants lacking the active-site tyrosine. Mol Cell Biol. 1992 Sep;12(9):3757–3765. [PMC free article] [PubMed]
  • Spiers AJ, Sherratt DJ. Relating primary structure to function in the Escherichia coli XerD site-specific recombinase. Mol Microbiol. 1997 Jun;24(5):1071–1082. [PubMed]
  • Honjo T. The shortest path from the surface to the nucleus: RBP-J kappa/Su(H) transcription factor. Genes Cells. 1996 Jan;1(1):1–9. [PubMed]
  • Todd JW, Passarelli AL, Lu A, Miller LK. Factors regulating baculovirus late and very late gene expression in transient-expression assays. J Virol. 1996 Apr;70(4):2307–2317. [PMC free article] [PubMed]
  • Lane D, de Feyter R, Kennedy M, Phua SH, Semon D. D protein of miniF plasmid acts as a repressor of transcription and as a site-specific resolvase. Nucleic Acids Res. 1986 Dec 22;14(24):9713–9728. [PMC free article] [PubMed]
  • Serre MC, Turlan C, Bortolin M, Chandler M. Mutagenesis of the IS1 transposase: importance of a His-Arg-Tyr triad for activity. J Bacteriol. 1995 Sep;177(17):5070–5077. [PMC free article] [PubMed]
  • Turlan C, Chandler M. IS1-mediated intramolecular rearrangements: formation of excised transposon circles and replicative deletions. EMBO J. 1995 Nov 1;14(21):5410–5421. [PMC free article] [PubMed]
  • Topal MD, Conrad M. Changing endonuclease EcoRII Tyr308 to Phe abolishes cleavage but not recognition: possible homology with the Int-family of recombinases. Nucleic Acids Res. 1993 Jun 11;21(11):2599–2603. [PMC free article] [PubMed]
  • Conrad M, Topal MD. Modified DNA fragments activate NaeI cleavage of refractory DNA sites. Nucleic Acids Res. 1992 Oct 11;20(19):5127–5130. [PMC free article] [PubMed]
  • Jo K, Topal MD. DNA topoisomerase and recombinase activities in Nae I restriction endonuclease. Science. 1995 Mar 24;267(5205):1817–1820. [PubMed]
  • Wah DA, Hirsch JA, Dorner LF, Schildkraut I, Aggarwal AK. Structure of the multimodular endonuclease FokI bound to DNA. Nature. 1997 Jul 3;388(6637):97–100. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...