• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. May 2004; 167(1): 35–49.
PMCID: PMC1470839

Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin.

Abstract

Large-scale screening of genetic and chemical-genetic interactions was used to examine the assembly and regulation of beta-1,3-glucan in Saccharomyces cerevisiae. Using the set of deletion mutants in approximately 4600 nonessential genes, we scored synthetic interactions with genes encoding subunits of the beta-1,3-glucan synthase (FKS1, FKS2), the glucan synthesis regulator (SMI1/KNR4), and a beta-1,3-glucanosyltransferase (GAS1). In the resulting network, FKS1, FKS2, GAS1, and SMI1 are connected to 135 genes in 195 interactions, with 26 of these genes also interacting with CHS3 encoding chitin synthase III. A network core of 51 genes is multiply connected with 112 interactions. Thirty-two of these core genes are known to be involved in cell wall assembly and polarized growth, and 8 genes of unknown function are candidates for involvement in these processes. In parallel, we screened the yeast deletion mutant collection for altered sensitivity to the glucan synthase inhibitor, caspofungin. Deletions in 52 genes led to caspofungin hypersensitivity and those in 39 genes to resistance. Integration of the glucan interaction network with the caspofungin data indicates an overlapping set of genes involved in FKS2 regulation, compensatory chitin synthesis, protein mannosylation, and the PKC1-dependent cell integrity pathway.

Full Text

The Full Text of this article is available as a PDF (370K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Drgonová J, Drgon T, Tanaka K, Kollár R, Chen GC, Ford RA, Chan CS, Takai Y, Cabib E. Rho1p, a yeast protein at the interface between cell polarization and morphogenesis. Science. 1996 Apr 12;272(5259):277–279. [PubMed]
  • García-Rodriguez LJ, Durán A, Roncero C. Calcofluor antifungal action depends on chitin and a functional high-osmolarity glycerol response (HOG) pathway: evidence for a physiological role of the Saccharomyces cerevisiae HOG pathway under noninducing conditions. J Bacteriol. 2000 May;182(9):2428–2437. [PMC free article] [PubMed]
  • García-Rodriguez LJ, Trilla JA, Castro C, Valdivieso MH, Durán A, Roncero C. Characterization of the chitin biosynthesis process as a compensatory mechanism in the fks1 mutant of Saccharomyces cerevisiae. FEBS Lett. 2000 Jul 28;478(1-2):84–88. [PubMed]
  • Giaever Guri, Chu Angela M, Ni Li, Connelly Carla, Riles Linda, Véronneau Steeve, Dow Sally, Lucau-Danila Ankuta, Anderson Keith, André Bruno, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002 Jul 25;418(6896):387–391. [PubMed]
  • Heinisch JJ, Lorberg A, Schmitz HP, Jacoby JJ. The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol. 1999 May;32(4):671–680. [PubMed]
  • Hong Z, Mann P, Brown NH, Tran LE, Shaw KJ, Hare RS, DiDomenico B. Cloning and characterization of KNR4, a yeast gene involved in (1,3)-beta-glucan synthesis. Mol Cell Biol. 1994 Feb;14(2):1017–1025. [PMC free article] [PubMed]
  • Huang Dongqing, Moffat Jason, Andrews Brenda. Dissection of a complex phenotype by functional genomics reveals roles for the yeast cyclin-dependent protein kinase Pho85 in stress adaptation and cell integrity. Mol Cell Biol. 2002 Jul;22(14):5076–5088. [PMC free article] [PubMed]
  • Huxley C, Green ED, Dunham I. Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet. 1990 Aug;6(8):236–236. [PubMed]
  • Igual JC, Johnson AL, Johnston LH. Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J. 1996 Sep 16;15(18):5001–5013. [PMC free article] [PubMed]
  • Kaeberlein Matt, Guarente Leonard. Saccharomyces cerevisiae MPT5 and SSD1 function in parallel pathways to promote cell wall integrity. Genetics. 2002 Jan;160(1):83–95. [PMC free article] [PubMed]
  • Klis Frans M, Mol Pieternella, Hellingwerf Klaas, Brul Stanley. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2002 Aug;26(3):239–256. [PubMed]
  • Kondoh Osamu, Takasuka Tsuyoshi, Arisawa Mikio, Aoki Yuko, Watanabe Takahide. Differential sensitivity between Fks1p and Fks2p against a novel beta -1,3-glucan synthase inhibitor, aerothricin3 [corrected]. J Biol Chem. 2002 Nov 1;277(44):41744–41749. [PubMed]
  • Lagorce Arnaud, Hauser Nicole C, Labourdette Delphine, Rodriguez Cristina, Martin-Yken Helene, Arroyo Javier, Hoheisel Jörg D, François Jean. Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem. 2003 May 30;278(22):20345–20357. [PubMed]
  • Agarwal Ameeta K, Rogers P David, Baerson Scott R, Jacob Melissa R, Barker Katherine S, Cleary John D, Walker Larry A, Nagle Dale G, Clark Alice M. Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cerevisiae. J Biol Chem. 2003 Sep 12;278(37):34998–35015. [PubMed]
  • Letscher-Bru Valérie, Herbrecht Raoul. Caspofungin: the first representative of a new antifungal class. J Antimicrob Chemother. 2003 Mar;51(3):513–521. [PubMed]
  • Alonso-Monge R, Real E, Wojda I, Bebelman JP, Mager WH, Siderius M. Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects. Mol Microbiol. 2001 Aug;41(3):717–730. [PubMed]
  • Lussier M, White AM, Sheraton J, di Paolo T, Treadwell J, Southard SB, Horenstein CI, Chen-Weiner J, Ram AF, Kapteyn JC, et al. Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics. 1997 Oct;147(2):435–450. [PMC free article] [PubMed]
  • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998 Jan 30;14(2):115–132. [PubMed]
  • Martin H, Dagkessamanskaia A, Satchanska G, Dallies N, François J. KNR4, a suppressor of Saccharomyces cerevisiae cwh mutants, is involved in the transcriptional control of chitin synthase genes. Microbiology. 1999 Jan;145(Pt 1):249–258. [PubMed]
  • Carotti Cristina, Ferrario Laura, Roncero Cesar, Valdivieso M-Henar, Duran Angel, Popolo Laura. Maintenance of cell integrity in the gas1 mutant of Saccharomyces cerevisiae requires the Chs3p-targeting and activation pathway and involves an unusual Chs3p localization. Yeast. 2002 Sep 30;19(13):1113–1124. [PubMed]
  • Martin-Yken Helene, Dagkessamanskaia Adilia, Talibi Driss, Francois Jean. KNR4 is a member of the PKC1 signalling pathway and genetically interacts with BCK2, a gene involved in cell cycle progression in Saccharomyces cerevisiae. Curr Genet. 2002 Aug;41(5):323–332. [PubMed]
  • Martin-Yken Helene, Dagkessamanskaia Adilia, Basmaji Fadi, Lagorce Arnaud, Francois Jean. The interaction of Slt2 MAP kinase with Knr4 is necessary for signalling through the cell wall integrity pathway in Saccharomyces cerevisiae. Mol Microbiol. 2003 Jul;49(1):23–35. [PubMed]
  • Dijkgraaf Gerrit J P, Abe Mitsuhiro, Ohya Yoshikazu, Bussey Howard. Mutations in Fks1p affect the cell wall content of beta-1,3- and beta-1,6-glucan in Saccharomyces cerevisiae. Yeast. 2002 Jun 15;19(8):671–690. [PubMed]
  • Mazur P, Morin N, Baginsky W, el-Sherbeini M, Clemas JA, Nielsen JB, Foor F. Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase. Mol Cell Biol. 1995 Oct;15(10):5671–5681. [PMC free article] [PubMed]
  • Mazzoni C, Zarov P, Rambourg A, Mann C. The SLT2 (MPK1) MAP kinase homolog is involved in polarized cell growth in Saccharomyces cerevisiae. J Cell Biol. 1993 Dec;123(6 Pt 2):1821–1833. [PMC free article] [PubMed]
  • Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP, Latgé JP. Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem. 2000 May 19;275(20):14882–14889. [PubMed]
  • Smits GJ, Kapteyn JC, van den Ende H, Klis FM. Cell wall dynamics in yeast. Curr Opin Microbiol. 1999 Aug;2(4):348–352. [PubMed]
  • Stathopoulos AM, Cyert MS. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev. 1997 Dec 15;11(24):3432–3444. [PMC free article] [PubMed]
  • Pagé Nicolas, Gérard-Vincent Manon, Ménard Patrice, Beaulieu Maude, Azuma Masayuki, Dijkgraaf Gerrit J P, Li Huijuan, Marcoux José, Nguyen Thuy, Dowse Tim, et al. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics. 2003 Mar;163(3):875–894. [PMC free article] [PubMed]
  • Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Pagé N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science. 2001 Dec 14;294(5550):2364–2368. [PubMed]
  • Parsons Ainslie B, Brost Renée L, Ding Huiming, Li Zhijian, Zhang Chaoying, Sheikh Bilal, Brown Grant W, Kane Patricia M, Hughes Timothy R, Boone Charles. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol. 2004 Jan;22(1):62–69. [PubMed]
  • Tong Amy Hin Yan, Lesage Guillaume, Bader Gary D, Ding Huiming, Xu Hong, Xin Xiaofeng, Young James, Berriz Gabriel F, Brost Renee L, Chang Michael, et al. Global mapping of the yeast genetic interaction network. Science. 2004 Feb 6;303(5659):808–813. [PubMed]
  • Pruyne D, Bretscher A. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J Cell Sci. 2000 Feb;113(Pt 3):365–375. [PubMed]
  • Valdivia Raphael H, Schekman Randy. The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10287–10292. [PMC free article] [PubMed]
  • Qadota H, Python CP, Inoue SB, Arisawa M, Anraku Y, Zheng Y, Watanabe T, Levin DE, Ohya Y. Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science. 1996 Apr 12;272(5259):279–281. [PubMed]
  • Valdivieso MH, Ferrario L, Vai M, Duran A, Popolo L. Chitin synthesis in a gas1 mutant of Saccharomyces cerevisiae. J Bacteriol. 2000 Sep;182(17):4752–4757. [PMC free article] [PubMed]
  • Ram AF, Kapteyn JC, Montijn RC, Caro LH, Douwes JE, Baginsky W, Mazur P, van den Ende H, Klis FM. Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of beta1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol. 1998 Mar;180(6):1418–1424. [PMC free article] [PubMed]
  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999 Aug 6;285(5429):901–906. [PubMed]
  • Reynolds TB, Hopkins BD, Lyons MR, Graham TR. The high osmolarity glycerol response (HOG) MAP kinase pathway controls localization of a yeast golgi glycosyltransferase. J Cell Biol. 1998 Nov 16;143(4):935–946. [PMC free article] [PubMed]
  • Zeitlinger Julia, Simon Itamar, Harbison Christopher T, Hannett Nancy M, Volkert Thomas L, Fink Gerald R, Young Richard A. Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell. 2003 May 2;113(3):395–404. [PubMed]
  • Rine J, Hansen W, Hardeman E, Davis RW. Targeted selection of recombinant clones through gene dosage effects. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6750–6754. [PMC free article] [PubMed]
  • Zhao C, Jung US, Garrett-Engele P, Roe T, Cyert MS, Levin DE. Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol Cell Biol. 1998 Feb;18(2):1013–1022. [PMC free article] [PubMed]
  • Roncero Cesar. The genetic complexity of chitin synthesis in fungi. Curr Genet. 2002 Sep;41(6):367–378. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...