• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Mar 2004; 166(3): 1269–1279.
PMCID: PMC1470770

Mutation accumulation in populations of varying size: the distribution of mutational effects for fitness correlates in Caenorhabditis elegans.

Abstract

The consequences of mutation for population-genetic and evolutionary processes depend on the rate and, especially, the frequency distribution of mutational effects on fitness. We sought to approximate the form of the distribution of mutational effects by conducting divergence experiments in which lines of a DNA repair-deficient strain of Caenorhabditis elegans, msh-2, were maintained at a range of population sizes. Assays of these lines conducted in parallel with the ancestral control suggest that the mutational variance is dominated by contributions from highly detrimental mutations. This was evidenced by the ability of all but the smallest population-size treatments to maintain relatively high levels of mean fitness even under the 100-fold increase in mutational pressure caused by knocking out the msh-2 gene. However, we show that the mean fitness decline experienced by larger populations is actually greater than expected on the basis of our estimates of mutational parameters, which could be consistent with the existence of a common class of mutations with small individual effects. Further, comparison of the total mutation rate estimated from direct sequencing of DNA to that detected from phenotypic analyses implies the existence of a large class of evolutionarily relevant mutations with no measurable effect on laboratory fitness.

Full Text

The Full Text of this article is available as a PDF (135K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Denver DR, Morris K, Lynch M, Vassilieva LL, Thomas WK. High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans. Science. 2000 Sep 29;289(5488):2342–2344. [PubMed]
  • Entian KD, Schuster T, Hegemann JH, Becher D, Feldmann H, Güldener U, Götz R, Hansen M, Hollenberg CP, Jansen G, et al. Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Mol Gen Genet. 1999 Dec;262(4-5):683–702. [PubMed]
  • Eyre-Walker A, Keightley PD. High genomic deleterious mutation rates in hominids. Nature. 1999 Jan 28;397(6717):344–347. [PubMed]
  • Flores C, Engels W. Microsatellite instability in Drosophila spellchecker1 (MutS homolog) mutants. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2964–2969. [PMC free article] [PubMed]
  • Fry JD. Rapid mutational declines of viability in Drosophila. Genet Res. 2001 Feb;77(1):53–60. [PubMed]
  • Fry James D, Heinsohn Stefanie L. Environment dependence of mutational parameters for viability in Drosophila melanogaster. Genetics. 2002 Jul;161(3):1155–1167. [PMC free article] [PubMed]
  • Gessler DD, Xu S. On the evolution of recombination and meiosis. Genet Res. 1999 Apr;73(2):119–131. [PubMed]
  • Harfe BD, Jinks-Robertson S. DNA mismatch repair and genetic instability. Annu Rev Genet. 2000;34:359–399. [PubMed]
  • Houle D, Morikawa B, Lynch M. Comparing mutational variabilities. Genetics. 1996 Jul;143(3):1467–1483. [PMC free article] [PubMed]
  • Johnson RE, Kovvali GK, Prakash L, Prakash S. Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability. J Biol Chem. 1996 Mar 29;271(13):7285–7288. [PubMed]
  • Keightley PD. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 1994 Dec;138(4):1315–1322. [PMC free article] [PubMed]
  • Barton NH, Turelli M. Evolutionary quantitative genetics: how little do we know? Annu Rev Genet. 1989;23:337–370. [PubMed]
  • Keightley PD. Nature of deleterious mutation load in Drosophila. Genetics. 1996 Dec;144(4):1993–1999. [PMC free article] [PubMed]
  • Keightley PD, Eyre-Walker A. Terumi Mukai and the riddle of deleterious mutation rates. Genetics. 1999 Oct;153(2):515–523. [PMC free article] [PubMed]
  • Buermeyer AB, Deschênes SM, Baker SM, Liskay RM. Mammalian DNA mismatch repair. Annu Rev Genet. 1999;33:533–564. [PubMed]
  • Burch CL, Chao L. Evolution by small steps and rugged landscapes in the RNA virus phi6. Genetics. 1999 Mar;151(3):921–927. [PMC free article] [PubMed]
  • Kondrashov AS. Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over? J Theor Biol. 1995 Aug 21;175(4):583–594. [PubMed]
  • Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998 Dec 11;282(5396):2012–2018. [PubMed]
  • Lande R. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet Res. 1975 Dec;26(3):221–235. [PubMed]
  • Charlesworth B, Charlesworth D. Some evolutionary consequences of deleterious mutations. Genetica. 1998;102-103(1-6):3–19. [PubMed]
  • Chavarrías D, López-Fanjul C, García-Dorado A. The rate of mutation and the homozygous and heterozygous mutational effects for competitive viability: a long-term experiment with Drosophila melanogaster. Genetics. 2001 Jun;158(2):681–693. [PMC free article] [PubMed]
  • Davies EK, Peters AD, Keightley PD. High frequency of cryptic deleterious mutations in Caenorhabditis elegans. Science. 1999 Sep 10;285(5434):1748–1751. [PubMed]
  • Degtyareva Natasha P, Greenwell Patricia, Hofmann E Randal, Hengartner Michael O, Zhang Lijia, Culotti Joseph G, Petes Thomas D. Caenorhabditis elegans DNA mismatch repair gene msh-2 is required for microsatellite stability and maintenance of genome integrity. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2158–2163. [PMC free article] [PubMed]
  • Mansour AA, Tornier C, Lehmann E, Darmon M, Fleck O. Control of GT repeat stability in Schizosaccharomyces pombe by mismatch repair factors. Genetics. 2001 May;158(1):77–85. [PMC free article] [PubMed]
  • Strand M, Prolla TA, Liskay RM, Petes TD. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. 1993 Sep 16;365(6443):274–276. [PubMed]
  • Marsischky GT, Filosi N, Kane MF, Kolodner R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 1996 Feb 15;10(4):407–420. [PubMed]
  • Turelli M. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor Popul Biol. 1984 Apr;25(2):138–193. [PubMed]
  • Mukai T, Chigusa SI, Mettler LE, Crow JF. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. [PMC free article] [PubMed]
  • Vassilieva LL, Lynch M. The rate of spontaneous mutation for life-history traits in Caenorhabditis elegans. Genetics. 1999 Jan;151(1):119–129. [PMC free article] [PubMed]
  • Vassilieva LL, Hook AM, Lynch M. The fitness effects of spontaneous mutations in Caenorhabditis elegans. Evolution. 2000 Aug;54(4):1234–1246. [PubMed]
  • Webb Colleen T, Shabalina Svetlana A, Ogurtsov Aleksey Yu, Kondrashov Alexey S. Analysis of similarity within 142 pairs of orthologous intergenic regions of Caenorhabditis elegans and Caenorhabditis briggsae. Nucleic Acids Res. 2002 Mar 1;30(5):1233–1239. [PMC free article] [PubMed]
  • Reenan RA, Kolodner RD. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics. 1992 Dec;132(4):975–985. [PMC free article] [PubMed]
  • Wierdl M, Dominska M, Petes TD. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics. 1997 Jul;146(3):769–779. [PMC free article] [PubMed]
  • Schoen DJ, David JL, Bataillon TM. Deleterious mutation accumulation and the regeneration of genetic resources. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):394–399. [PMC free article] [PubMed]
  • Wloch DM, Szafraniec K, Borts RH, Korona R. Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccharomyces cerevisiae. Genetics. 2001 Oct;159(2):441–452. [PMC free article] [PubMed]
  • Shaw Frank H, Geyer Charles J, Shaw Ruth G. A comprehensive model of mutations affecting fitness and inferences for Arabidopsis thaliana. Evolution. 2002 Mar;56(3):453–463. [PubMed]
  • Zeyl C, DeVisser JA. Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae. Genetics. 2001 Jan;157(1):53–61. [PMC free article] [PubMed]
  • Shaw RG, Byers DL, Darmo E. Spontaneous mutational effects on reproductive traits of arabidopsis thaliana. Genetics. 2000 May;155(1):369–378. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Gene
    Gene
    Gene links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • MedGen
    MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • PubMed
    PubMed
    PubMed citations for these articles
  • Taxonomy
    Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...