• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Mar 2004; 166(3): 1463–1502.
PMCID: PMC1470769

A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa.

Abstract

A core genetic map of the legume Medicago truncatula has been established by analyzing the segregation of 288 sequence-characterized genetic markers in an F(2) population composed of 93 individuals. These molecular markers correspond to 141 ESTs, 80 BAC end sequence tags, and 67 resistance gene analogs, covering 513 cM. In the case of EST-based markers we used an intron-targeted marker strategy with primers designed to anneal in conserved exon regions and to amplify across intron regions. Polymorphisms were significantly more frequent in intron vs. exon regions, thus providing an efficient mechanism to map transcribed genes. Genetic and cytogenetic analysis produced eight well-resolved linkage groups, which have been previously correlated with eight chromosomes by means of FISH with mapped BAC clones. We anticipated that mapping of conserved coding regions would have utility for comparative mapping among legumes; thus 60 of the EST-based primer pairs were designed to amplify orthologous sequences across a range of legume species. As an initial test of this strategy, we used primers designed against M. truncatula exon sequences to rapidly map genes in M. sativa. The resulting comparative map, which includes 68 bridging markers, indicates that the two Medicago genomes are highly similar and establishes the basis for a Medicago composite map.

Full Text

The Full Text of this article is available as a PDF (582K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ané Jean-Michel, Kiss György B, Riely Brendan K, Penmetsa R Varma, Oldroyd Giles E D, Ayax Céline, Lévy Julien, Debellé Frédéric, Baek Jong-Min, Kalo Peter, et al. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science. 2004 Feb 27;303(5662):1364–1367. [PubMed]
  • Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):796–815. [PubMed]
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. [PubMed]
  • Amor Besma Ben, Shaw Sidney L, Oldroyd Giles E D, Maillet Fabienne, Penmetsa R Varma, Cook Douglas, Long Sharon R, Dénarié Jean, Gough Clare. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J. 2003 May;34(4):495–506. [PubMed]
  • Bonnin I, Prosperi JM, Olivieri I. Genetic markers and quantitative genetic variation in Medicago truncatula (Leguminosae): a comparative analysis of population structure. Genetics. 1996 Aug;143(4):1795–1805. [PMC free article] [PubMed]
  • Kiss GB, Csanádi G, Kálmán K, Kaló P, Okrész L. Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers. Mol Gen Genet. 1993 Apr;238(1-2):129–137. [PubMed]
  • Cannon Steven B, Zhu Hongyan, Baumgarten Andrew M, Spangler Russell, May Georgiana, Cook Douglas R, Young Nevin D. Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol. 2002 Apr;54(4):548–562. [PubMed]
  • Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. [PubMed]
  • Catoira R, Galera C, de Billy F, Penmetsa RV, Journet EP, Maillet F, Rosenberg C, Cook D, Gough C, Dénarié J. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell. 2000 Sep;12(9):1647–1666. [PMC free article] [PubMed]
  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. [PubMed]
  • Catoira R, Timmers AC, Maillet F, Galera C, Penmetsa RV, Cook D, Dénarié J, Gough C. The HCL gene of Medicago truncatula controls Rhizobium-induced root hair curling. Development. 2001 May;128(9):1507–1518. [PubMed]
  • Limpens Erik, Franken Carolien, Smit Patrick, Willemse Joost, Bisseling Ton, Geurts René LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science. 2003 Oct 24;302(5645):630–633. [PubMed]
  • Cohn JR, Uhm T, Ramu S, Nam YW, Kim DJ, Penmetsa RV, Wood TC, Denny RL, Young ND, Cook DR, et al. Differential regulation of a family of apyrase genes from Medicago truncatula. Plant Physiol. 2001 Apr;125(4):2104–2119. [PMC free article] [PubMed]
  • Cook DR. Medicago truncatula--a model in the making! Curr Opin Plant Biol. 1999 Aug;2(4):301–304. [PubMed]
  • Liu Jinyuan, Blaylock Laura A, Endre Gabriella, Cho Jennifer, Town Christopher D, VandenBosch Kathryn A, Harrison Maria J. Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell. 2003 Sep;15(9):2106–2123. [PMC free article] [PubMed]
  • Cook D, Dreyer D, Bonnet D, Howell M, Nony E, VandenBosch K. Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti. Plant Cell. 1995 Jan;7(1):43–55. [PMC free article] [PubMed]
  • Crespi MD, Jurkevitch E, Poiret M, d'Aubenton-Carafa Y, Petrovics G, Kondorosi E, Kondorosi A. enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. EMBO J. 1994 Nov 1;13(21):5099–5112. [PMC free article] [PubMed]
  • McConn Michele M, Nakata Paul A. Calcium oxalate crystal morphology mutants from Medicago truncatula. Planta. 2002 Jul;215(3):380–386. [PubMed]
  • Michaels SD, Amasino RM. A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J. 1998 May;14(3):381–385. [PubMed]
  • Nakata PA, McConn MM. Isolation of Medicago truncatula mutants defective in calcium oxalate crystal formation. Plant Physiol. 2000 Nov;124(3):1097–1104. [PMC free article] [PubMed]
  • Endre Gabriella, Kereszt Attila, Kevei Zoltán, Mihacea Sorina, Kaló Péter, Kiss György B. A receptor kinase gene regulating symbiotic nodule development. Nature. 2002 Jun 27;417(6892):962–966. [PubMed]
  • Fedorova Maria, van de Mortel Judith, Matsumoto Peter A, Cho Jennifer, Town Christopher D, VandenBosch Kathryn A, Gantt J Stephen, Vance Carroll P. Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. Plant Physiol. 2002 Oct;130(2):519–537. [PMC free article] [PubMed]
  • Neff MM, Neff JD, Chory J, Pepper AE. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 1998 May;14(3):387–392. [PubMed]
  • Fransz P, Armstrong S, Alonso-Blanco C, Fischer TC, Torres-Ruiz RA, Jones G. Cytogenetics for the model system Arabidopsis thaliana. Plant J. 1998 Mar;13(6):867–876. [PubMed]
  • Penmetsa RV, Cook DR. A Legume Ethylene-Insensitive Mutant Hyperinfected by Its Rhizobial Symbiont. Science. 1997 Jan 24;275(5299):527–530. [PubMed]
  • Gallusci P, Dedieu A, Journet EP, Huguet T, Barker DG. Synchronous expression of leghaemoglobin genes in Medicago truncatula during nitrogen-fixing root nodule development and response to exogenously supplied nitrate. Plant Mol Biol. 1991 Sep;17(3):335–349. [PubMed]
  • Penmetsa RV, Cook DR. Production and characterization of diverse developmental mutants of Medicago truncatula. Plant Physiol. 2000 Aug;123(4):1387–1398. [PMC free article] [PubMed]
  • Schnabel E, Kulikova O, Penmetsa RV, Bisseling T, Cook DR, Frugoli J. An integrated physical, genetic and cytogenetic map around the sunn locus of Medicago truncatula. Genome. 2003 Aug;46(4):665–672. [PubMed]
  • Gualtieri Gustavo, Kulikova Olga, Limpens Erik, Kim Dong-Jin, Cook Douglas R, Bisselin Ton, Geurts René Microsynteny between pea and Medicago truncatula in the SYM2 region. Plant Mol Biol. 2002 Sep;50(2):225–235. [PubMed]
  • Harrison Maria J, Dewbre Gary R, Liu Jinyuan. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell. 2002 Oct;14(10):2413–2429. [PMC free article] [PubMed]
  • Hauser MT, Adhami F, Dorner M, Fuchs E, Glössl J. Generation of co-dominant PCR-based markers by duplex analysis on high resolution gels. Plant J. 1998 Oct;16(1):117–125. [PubMed]
  • Heslop-Harrison JS, Harrison GE, Leitch IJ. Reprobing of DNA:DNA in situ hybridization preparations. Trends Genet. 1992 Nov;8(11):372–373. [PubMed]
  • Zhu Hongyan, Kim Dong-Jin, Baek Jong-Min, Choi Hong-Kyu, Ellis Leland C, Küester Helge, McCombie W Richard, Peng Hui-Mei, Cook Douglas R. Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. Plant Physiol. 2003 Mar;131(3):1018–1026. [PMC free article] [PubMed]
  • Yang WC, Katinakis P, Hendriks P, Smolders A, de Vries F, Spee J, van Kammen A, Bisseling T, Franssen H. Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development. Plant J. 1993 Apr;3(4):573–585. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...