• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Feb 2004; 166(2): 895–899.
PMCID: PMC1470731

Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells.

Abstract

The Tol2 transposable element of the Japanese medaka fish belongs to the hAT family of transposons including hobo of Drosophila, Ac of maize, and Tam3 of snapdragon. To date, Tol2 is the only natural transposon in vertebrates that has ever been shown to encode a fully functional transposase. It has not been known, however, whether Tol2 can transpose in vertebrates other than fish. We report here transposition of Tol2 in mouse embryonic stem (ES) cells. We constructed a transposon donor plasmid containing a nonautonomous Tol2 element with the neomycin resistance gene and a helper plasmid capable of expressing the transposase and introduced the donor plasmid with various amounts of the helper plasmid by electroporation into mouse ES cells. The number of G418-resistant ES colonies increased as the amount of helper plasmid was increased, in a dose-dependent manner, indicating that the transposase activity elevated the integration efficiency. These G418-resistant ES colonies were cloned and the structure of the junction of the integrated Tol2 element and the genomic DNA was analyzed by inverse PCR. In those clones, Tol2 was surrounded by mouse genomic sequences and an 8-bp direct repeat was created adjacent to both ends of Tol2, indicating that Tol2 was integrated in the genome through transposition. The Tol2 transposon system is thus active in mouse as well as in fish. We propose that it should be used as a genetic tool to develop novel gene transfer, transgenesis, and mutagenesis methods in mammals.

Full Text

The Full Text of this article is available as a PDF (146K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Araki K, Imaizumi T, Okuyama K, Oike Y, Yamamura K. Efficiency of recombination by Cre transient expression in embryonic stem cells: comparison of various promoters. J Biochem. 1997 Nov;122(5):977–982. [PubMed]
  • Dupuy AJ, Fritz S, Largaespada DA. Transposition and gene disruption in the male germline of the mouse. Genesis. 2001 Jun;30(2):82–88. [PubMed]
  • Dupuy Adam J, Clark Karl, Carlson Corey M, Fritz Sabine, Davidson Ann E, Markley Karra M, Finley Ken, Fletcher Colin F, Ekker Stephen C, Hackett Perry B, et al. Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4495–4499. [PMC free article] [PubMed]
  • Fischer SE, Wienholds E, Plasterk RH. Regulated transposition of a fish transposon in the mouse germ line. Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6759–6764. [PMC free article] [PubMed]
  • Horie K, Kuroiwa A, Ikawa M, Okabe M, Kondoh G, Matsuda Y, Takeda J. Efficient chromosomal transposition of a Tc1/mariner- like transposon Sleeping Beauty in mice. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9191–9196. [PMC free article] [PubMed]
  • Ivics Z, Hackett PB, Plasterk RH, Izsvák Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell. 1997 Nov 14;91(4):501–510. [PubMed]
  • Kawakami K, Shima A. Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene. 1999 Nov 15;240(1):239–244. [PubMed]
  • Kawakami K, Koga A, Hori H, Shima A. Excision of the tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene. 1998 Dec 28;225(1-2):17–22. [PubMed]
  • Kawakami K, Shima A, Kawakami N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11403–11408. [PMC free article] [PubMed]
  • Nakai S, Kawano H, Yudate T, Nishi M, Kuno J, Nagata A, Jishage K, Hamada H, Fujii H, Kawamura K, et al. The POU domain transcription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Genes Dev. 1995 Dec 15;9(24):3109–3121. [PubMed]
  • Niwa H, Yamamura K, Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991 Dec 15;108(2):193–199. [PubMed]
  • Yant SR, Meuse L, Chiu W, Ivics Z, Izsvak Z, Kay MA. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet. 2000 May;25(1):35–41. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...