Logo of envhperEnvironmental Health PerspectivesBrowse ArticlesAbout EHPGeneral InformationAuthorsMediaProgramsPartnerships
Environ Health Perspect. 1997 Jun; 105(Suppl 4): 791–799.
PMCID: PMC1470052
Research Article

The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics.


Human glutathione transferases (GSTs) are a multigene family of enzymes that are involved in the metabolism of a wide range of electrophilic compounds of both exogenous and endogenous origin. GSTs are generally recognized as detoxifying enzymes by catalyzing the conjugation of these compounds with glutathione, but they may also be involved in activation of some carcinogens. The memmalian GSTs can be differentiated into four classes of cytosolic enzymes and two membrane bound enzymes. Human epoxide hydrolases (EHs) catalyze the addition of water to epoxides to form the corresponding dihydrodiol. The enzymatic hydration is essentially irreversible and produces mainly metabolites of lower reactivity that can be conjugated and excreted. The reaction of EHs is therefore generally regarded as detoxifying. The mammalian EHs can be distinguished by their physical and enzymatic properties. Microsomal EH (mEH) exhibits a broad substrate specificity, while the soluble EH (sEH) is an enzyme with a "complementary" substrate specificity to mEH. Cholesterol EH and leukotriene A4 hydrolase are two EHs with very limited substrate specificity. The activities of either GSTs or EHs expressed in vivo exhibit a relatively large interindividual variation, which might be explained by induction, inhibition, or genetic factors. These variations in levels or activities of individual isoenzymes are of importance with respect to an individual's susceptibility to genotoxic effects. This article gives a general overview of GSTs and EHs, discussing the modulation of activities, determination of these enzymes ex vivo, and the polymorphic expression of some isoenzymes.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981 Jun;66(6):1191–1308. [PubMed]
  • Miller EC. Some current perspectives on chemical carcinogenesis in humans and experimental animals: Presidential Address. Cancer Res. 1978 Jun;38(6):1479–1496. [PubMed]
  • Seidegård J, DePierre JW. Microsomal epoxide hydrolase. Properties, regulation and function. Biochim Biophys Acta. 1983 Dec 29;695(3-4):251–270. [PubMed]
  • Mannervik B, Danielson UH. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. [PubMed]
  • Jakoby WB. The glutathione S-transferases: a group of multifunctional detoxification proteins. Adv Enzymol Relat Areas Mol Biol. 1978;46:383–414. [PubMed]
  • Mannervik B. The isoenzymes of glutathione transferase. Adv Enzymol Relat Areas Mol Biol. 1985;57:357–417. [PubMed]
  • Prohaska JR. The glutathione peroxidase activity of glutathione S-transferases. Biochim Biophys Acta. 1980 Jan 11;611(1):87–98. [PubMed]
  • Vos RM, Rietjens IM, Stevens LH, Van Bladeren PJ. Methyl linoleate ozonide as a substrate for rat glutathione S-transferases: reaction pathway and isoenzyme selectivity. Chem Biol Interact. 1989;69(2-3):269–278. [PubMed]
  • Coles B, Ketterer B. The role of glutathione and glutathione transferases in chemical carcinogenesis. Crit Rev Biochem Mol Biol. 1990;25(1):47–70. [PubMed]
  • Vamvakas S, Anders MW. Formation of reactive intermediates by phase II enzymes: glutathione-dependent bioactivation reactions. Adv Exp Med Biol. 1991;283:13–24. [PubMed]
  • Hayes JD, Mantle TJ. Use of immuno-blot techniques to discriminate between the glutathione S-transferase Yf, Yk, Ya, Yn/Yb and Yc subunits and to study their distribution in extrahepatic tissues. Evidence for three immunochemically distinct groups of transferase in the rat. Biochem J. 1986 Feb 1;233(3):779–788. [PMC free article] [PubMed]
  • Mannervik B, Awasthi YC, Board PG, Hayes JD, Di Ilio C, Ketterer B, Listowsky I, Morgenstern R, Muramatsu M, Pearson WR, et al. Nomenclature for human glutathione transferases. Biochem J. 1992 Feb 15;282(Pt 1):305–306. [PMC free article] [PubMed]
  • Stockman PK, McLellan LI, Hayes JD. Characterization of the basic glutathione S-transferase B1 and B2 subunits from human liver. Biochem J. 1987 May 15;244(1):55–61. [PMC free article] [PubMed]
  • Del Boccio G, Di Ilio C, Alin P, Jörnvall H, Mannervik B. Identification of a novel glutathione transferase in human skin homologous with class alpha glutathione transferase 2-2 in the rat. Biochem J. 1987 May 15;244(1):21–25. [PMC free article] [PubMed]
  • Ahmad H, Singhal SS, Saxena M, Awasthi YC. Characterization of two novel subunits of the alpha-class glutathione S-transferases of human liver. Biochim Biophys Acta. 1993 Feb 13;1161(2-3):333–336. [PubMed]
  • Strange RC, Faulder CG, Davis BA, Hume R, Brown JA, Cotton W, Hopkinson DA. The human glutathione S-transferases: studies on the tissue distribution and genetic variation of the GST1, GST2 and GST3 isozymes. Ann Hum Genet. 1984 Jan;48(Pt 1):11–20. [PubMed]
  • Chen LZ, Board PG. Hgi AI restriction fragment length polymorphism at the human glutathione S-transferase 2 locus. Nucleic Acids Res. 1987 Aug 11;15(15):6306–6306. [PMC free article] [PubMed]
  • Benson AM, Talalay P. Role of reduced glutathione in the delta(5)-3-kitosteroid isomerase reaction of liver. Biochem Biophys Res Commun. 1976 Apr 19;69(4):1073–1079. [PubMed]
  • Bhargava MM, Listowsky I, Arias IM. Ligandin. Bilirubin binding and glutathione-S-transferase activity are independent processes. J Biol Chem. 1978 Jun 25;253(12):4112–4115. [PubMed]
  • Pearson WR, Vorachek WR, Xu SJ, Berger R, Hart I, Vannais D, Patterson D. Identification of class-mu glutathione transferase genes GSTM1-GSTM5 on human chromosome 1p13. Am J Hum Genet. 1993 Jul;53(1):220–233. [PMC free article] [PubMed]
  • Zhong S, Wolf CR, Spurr NK. Chromosomal assignment and linkage analysis of the human glutathione S-transferase mu gene (GSTM1) using intron specific polymerase chain reaction. Hum Genet. 1992 Dec;90(4):435–439. [PubMed]
  • Strange RC, Fryer AA, Matharoo B, Zhao L, Broome J, Campbell DA, Jones P, Pastor IC, Singh RV. The human glutathione S-transferases: comparison of isoenzyme expression in normal and astrocytoma brain. Biochim Biophys Acta. 1992 Jul 7;1139(3):222–228. [PubMed]
  • Takahashi Y, Campbell EA, Hirata Y, Takayama T, Listowsky I. A basis for differentiating among the multiple human Mu-glutathione S-transferases and molecular cloning of brain GSTM5. J Biol Chem. 1993 Apr 25;268(12):8893–8898. [PubMed]
  • Seidegård J, Pero RW. The hereditary transmission of high glutathione transferase activity towards trans-stilbene oxide in human mononuclear leukocytes. Hum Genet. 1985;69(1):66–68. [PubMed]
  • Seidegård J, Vorachek WR, Pero RW, Pearson WR. Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7293–7297. [PMC free article] [PubMed]
  • DeJong JL, Chang CM, Whang-Peng J, Knutsen T, Tu CP. The human liver glutathione S-transferase gene superfamily: expression and chromosome mapping of an Hb subunit cDNA. Nucleic Acids Res. 1988 Sep 12;16(17):8541–8554. [PMC free article] [PubMed]
  • Warholm M, Guthenberg C, Mannervik B. Molecular and catalytic properties of glutathione transferase mu from human liver: an enzyme efficiently conjugating epoxides. Biochemistry. 1983 Jul 19;22(15):3610–3617. [PubMed]
  • Liu YH, Taylor J, Linko P, Lucier GW, Thompson CL. Glutathione S-transferase mu in human lymphocyte and liver: role in modulating formation of carcinogen-derived DNA adducts. Carcinogenesis. 1991 Dec;12(12):2269–2275. [PubMed]
  • Wiencke JK, Kelsey KT, Lamela RA, Toscano WA., Jr Human glutathione S-transferase deficiency as a marker of susceptibility to epoxide-induced cytogenetic damage. Cancer Res. 1990 Mar 1;50(5):1585–1590. [PubMed]
  • Seidegård J, Pero RW, Miller DG, Beattie EJ. A glutathione transferase in human leukocytes as a marker for the susceptibility to lung cancer. Carcinogenesis. 1986 May;7(5):751–753. [PubMed]
  • Moscow JA, Townsend AJ, Goldsmith ME, Whang-Peng J, Vickers PJ, Poisson R, Legault-Poisson S, Myers CE, Cowan KH. Isolation of the human anionic glutathione S-transferase cDNA and the relation of its gene expression to estrogen-receptor content in primary breast cancer. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6518–6522. [PMC free article] [PubMed]
  • Suzuki T, Coggan M, Shaw DC, Board PG. Electrophoretic and immunological analysis of human glutathione S-transferase isozymes. Ann Hum Genet. 1987 May;51(Pt 2):95–106. [PubMed]
  • Board PG, Webb GC, Coggan M. Isolation of a cDNA clone and localization of the human glutathione S-transferase 3 genes to chromosome bands 11q13 and 12q13-14. Ann Hum Genet. 1989 Jul;53(Pt 3):205–213. [PubMed]
  • Board P, Coggan M, Johnston P, Ross V, Suzuki T, Webb G. Genetic heterogeneity of the human glutathione transferases: a complex of gene families. Pharmacol Ther. 1990;48(3):357–369. [PubMed]
  • Shiratori Y, Soma Y, Maruyama H, Sato S, Takano A, Sato K. Immunohistochemical detection of the placental form of glutathione S-transferase in dysplastic and neoplastic human uterine cervix lesions. Cancer Res. 1987 Dec 15;47(24 Pt 1):6806–6809. [PubMed]
  • Shea TC, Kelley SL, Henner WD. Identification of an anionic form of glutathione transferase present in many human tumors and human tumor cell lines. Cancer Res. 1988 Feb 1;48(3):527–533. [PubMed]
  • Meyer DJ, Coles B, Pemble SE, Gilmore KS, Fraser GM, Ketterer B. Theta, a new class of glutathione transferases purified from rat and man. Biochem J. 1991 Mar 1;274(Pt 2):409–414. [PMC free article] [PubMed]
  • Hussey AJ, Hayes JD. Characterization of a human class-Theta glutathione S-transferase with activity towards 1-menaphthyl sulphate. Biochem J. 1992 Sep 15;286(Pt 3):929–935. [PMC free article] [PubMed]
  • Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, Ketterer B, Taylor JB. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J. 1994 May 15;300(Pt 1):271–276. [PMC free article] [PubMed]
  • Peter H, Deutschmann S, Reichel C, Hallier E. Metabolism of methyl chloride by human erythrocytes. Arch Toxicol. 1989;63(5):351–355. [PubMed]
  • Warholm M, Rane A, Alexandrie AK, Monaghan G, Rannug A. Genotypic and phenotypic determination of polymorphic glutathione transferase T1 in a Swedish population. Pharmacogenetics. 1995 Aug;5(4):252–254. [PubMed]
  • Ketterer B, Fraser G, Meyer DJ. Nuclear glutathione transferases which detoxify irradiated DNA. Adv Exp Med Biol. 1990;264:301–310. [PubMed]
  • Morgenstern R, Lundqvist G, Andersson G, Balk L, DePierre JW. The distribution of microsomal glutathione transferase among different organelles, different organs, and different organisms. Biochem Pharmacol. 1984 Nov 15;33(22):3609–3614. [PubMed]
  • DeJong JL, Mohandas T, Tu CP. The gene for the microsomal glutathione S-transferase is on human chromosome 12. Genomics. 1990 Feb;6(2):379–382. [PubMed]
  • Aniya Y, Anders MW. Regulation of rat liver microsomal glutathione S-transferase activity by thiol/disulfide exchange. Arch Biochem Biophys. 1989 Apr;270(1):330–334. [PubMed]
  • Aniya Y, Anders MW. Activation of rat liver microsomal glutathione S-transferase by reduced oxygen species. J Biol Chem. 1989 Feb 5;264(4):1998–2002. [PubMed]
  • Wirth PJ, Thorgeirsson SS. Glutathione synthesis and degradation in fetal and adult rat liver and Novikoff hepatoma. Cancer Res. 1978 Sep;38(9):2861–2865. [PubMed]
  • Lauterburg BH, Vaishnav Y, Stillwell WG, Mitchell JR. The effects of age and glutathione depletion on hepatic glutathione turnover in vivo determined by acetaminophen probe analysis. J Pharmacol Exp Ther. 1980 Apr;213(1):54–58. [PubMed]
  • Ghersi-Egea JF, Perrin R, Leininger-Muller B, Grassiot MC, Jeandel C, Floquet J, Cuny G, Siest G, Minn A. Subcellular localization of cytochrome P450, and activities of several enzymes responsible for drug metabolism in the human brain. Biochem Pharmacol. 1993 Feb 9;45(3):647–658. [PubMed]
  • Papadopoulos D, Jörnvall H, Rydström J, DePierre JW. Purification and initial characterization of microsomal epoxide hydrolase from the human adrenal gland. Biochim Biophys Acta. 1994 Jun 12;1206(2):253–262. [PubMed]
  • Papadopoulos D, Seidegard J, Rydström J. Metabolism of xenobiotics in the human adrenal gland. Cancer Lett. 1984 Feb;22(1):23–30. [PubMed]
  • Glatt HR, Wölfel T, Oesch F. Determination of epoxide hydrolase activity in whole cells (human lymphocytes) and activation by benzoflavones. Biochem Biophys Res Commun. 1983 Jan 27;110(2):525–529. [PubMed]
  • Seidegård J, DePierre JW, Pero RW. Measurement and characterization of membrane-bound and soluble epoxide hydrolase activities in resting mononuclear leukocytes from human blood. Cancer Res. 1984 Sep;44(9):3654–3660. [PubMed]
  • Ratanasavanh D, Beaune P, Baffet G, Rissel M, Kremers P, Guengerich FP, Guillouzo A. Immunocytochemical evidence for the maintenance of cytochrome P-450 isozymes, NADPH cytochrome C reductase, and epoxide hydrolase in pure and mixed primary cultures of adult human hepatocytes. J Histochem Cytochem. 1986 Apr;34(4):527–533. [PubMed]
  • Berlin G, Selbing A, Gottvall T. Plasma exchange and high-dose i.v. immunoglobulin in the treatment of severe rhesus hemolytic disease. Prog Clin Biol Res. 1990;337:337–340. [PubMed]
  • Hassett C, Aicher L, Sidhu JS, Omiecinski CJ. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet. 1994 Mar;3(3):421–428. [PubMed]
  • Skoda RC, Demierre A, McBride OW, Gonzalez FJ, Meyer UA. Human microsomal xenobiotic epoxide hydrolase. Complementary DNA sequence, complementary DNA-directed expression in COS-1 cells, and chromosomal localization. J Biol Chem. 1988 Jan 25;263(3):1549–1554. [PubMed]
  • Falany CN, McQuiddy P, Kasper CB. Structure and organization of the microsomal xenobiotic epoxide hydrolase gene. J Biol Chem. 1987 Apr 25;262(12):5924–5930. [PubMed]
  • Alves C, von Dippe P, Amoui M, Levy D. Bile acid transport into hepatocyte smooth endoplasmic reticulum vesicles is mediated by microsomal epoxide hydrolase, a membrane protein exhibiting two distinct topological orientations. J Biol Chem. 1993 Sep 25;268(27):20148–20155. [PubMed]
  • Krämer A, Frank H, Setiabudi F, Oesch F, Glatt H. Influence of the level of cytosolic epoxide hydrolase on the induction of sister chromatid exchanges by trans-beta-ethylstyrene 7,8-oxide in human lymphocytes. Biochem Pharmacol. 1991 Nov 6;42(11):2147–2152. [PubMed]
  • Beetham JK, Tian T, Hammock BD. cDNA cloning and expression of a soluble epoxide hydrolase from human liver. Arch Biochem Biophys. 1993 Aug 15;305(1):197–201. [PubMed]
  • Larsson C, White I, Johansson C, Stark A, Meijer J. Localization of the human soluble epoxide hydrolase gene (EPHX2) to chromosomal region 8p21-p12. Hum Genet. 1995 Mar;95(3):356–358. [PubMed]
  • Wang P, Meijer J, Guengerich FP. Purification of human liver cytosolic epoxide hydrolase and comparison to the microsomal enzyme. Biochemistry. 1982 Nov 9;21(23):5769–5776. [PubMed]
  • Watabe T, Kanai M, Isobe M, Ozawa N. The hepatic microsomal biotransformation of delta 5-steroids to 5 alpha, 6 beta-glycols via alpha- and beta-epoxides. J Biol Chem. 1981 Mar 25;256(6):2900–2907. [PubMed]
  • Reddy BS, Wynder EL. Metabolic epidemiology of colon cancer. Fecal bile acids and neutral sterols in colon cancer patients and patients with adenomatous polyps. Cancer. 1977 Jun;39(6):2533–2539. [PubMed]
  • Haeggström J, Meijer J, Rådmark O. Leukotriene A4. Enzymatic conversion into 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid by mouse liver cytosolic epoxide hydrolase. J Biol Chem. 1986 May 15;261(14):6332–6337. [PubMed]
  • Rushmore TH, Pickett CB. Glutathione S-transferases, structure, regulation, and therapeutic implications. J Biol Chem. 1993 Jun 5;268(16):11475–11478. [PubMed]
  • Kroetz DL, Kerr BM, McFarland LV, Loiseau P, Wilensky AJ, Levy RH. Measurement of in vivo microsomal epoxide hydrolase activity in white subjects. Clin Pharmacol Ther. 1993 Mar;53(3):306–315. [PubMed]
  • Meijer J, DePierre JW. Cytosolic epoxide hydrolase. Chem Biol Interact. 1988;64(3):207–249. [PubMed]
  • Kumar KS, Weiss JF. Inhibition of glutathione peroxidase and glutathione transferase in mouse liver by misonidazole. Biochem Pharmacol. 1986 Sep 15;35(18):3143–3146. [PubMed]
  • Pisani F, Haj-Yehia A, Fazio A, Artesi C, Oteri G, Perucca E, Kroetz DL, Levy RH, Bialer M. Carbamazepine-valnoctamide interaction in epileptic patients: in vitro/in vivo correlation. Epilepsia. 1993 Sep-Oct;34(5):954–959. [PubMed]
  • Kerr BM, Rettie AE, Eddy AC, Loiseau P, Guyot M, Wilensky AJ, Levy RH. Inhibition of human liver microsomal epoxide hydrolase by valproate and valpromide: in vitro/in vivo correlation. Clin Pharmacol Ther. 1989 Jul;46(1):82–93. [PubMed]
  • Miyamoto T, Silva M, Hammock BD. Inhibition of epoxide hydrolases and glutathione S-transferases by 2-, 3-, and 4-substituted derivatives of 4'-phenylchalcone and its oxide. Arch Biochem Biophys. 1987 Apr;254(1):203–213. [PubMed]
  • Petruzzelli S, Franchi M, Gronchi L, Janni A, Oesch F, Pacifici GM, Giuntini C. Cigarette smoke inhibits cytosolic but not microsomal epoxide hydrolase of human lung. Hum Exp Toxicol. 1992 Mar;11(2):99–103. [PubMed]
  • Oesch F, Timms CW, Walker CH, Guenthner TM, Sparrow A, Watabe T, Wolf CR. Existence of multiple forms of microsomal epoxide hydrolases with radically different substrate specificities. Carcinogenesis. 1984 Jan;5(1):7–9. [PubMed]
  • Adachi Y, Horii K, Takahashi Y, Tanihata M, Ohba Y, Yamamoto T. Serum glutathione S-transferase activity in liver diseases. Clin Chim Acta. 1980 Oct 9;106(3):243–255. [PubMed]
  • Singh SV, Leal T, Awasthi YC. Inhibition of human glutathione S-transferases by bile acids. Toxicol Appl Pharmacol. 1988 Sep 15;95(2):248–254. [PubMed]
  • Hussey AJ, Hayes JD, Beckett GJ. The polymorphic expression of neutral glutathione S-transferase in human mononuclear leucocytes as measured by specific radioimmunoassay. Biochem Pharmacol. 1987 Nov 15;36(22):4013–4015. [PubMed]
  • Howie AF, Hayes JD, Beckett GJ. Purification of acidic glutathione S-transferases from human lung, placenta and erythrocyte and the development of a specific radioimmunoassay for their measurement. Clin Chim Acta. 1988 Sep 30;177(1):65–75. [PubMed]
  • Stockman PK, Beckett GJ, Hayes JD. Identification of a basic hybrid glutathione S-transferase from human liver. Glutathione S-transferase delta is composed of two distinct subunits (B1 and B2). Biochem J. 1985 Apr 15;227(2):457–465. [PMC free article] [PubMed]
  • Rao MS, Nemali MR, Usuda N, Scarpelli DG, Makino T, Pitot HC, Reddy JK. Lack of expression of glutathione-S-transferase P, gamma-glutamyl transpeptidase, and alpha-fetoprotein messenger RNAs in liver tumors induced by peroxisome proliferators. Cancer Res. 1988 Sep 1;48(17):4919–4925. [PubMed]
  • Mertes I, Fleischmann R, Glatt HR, Oesch F. Interindividual variations in the activities of cytosolic and microsomal epoxide hydrolase in human liver. Carcinogenesis. 1985 Feb;6(2):219–223. [PubMed]
  • Ostlund Farrants AK, Meyer DJ, Coles B, Southan C, Aitken A, Johnson PJ, Ketterer B. The separation of glutathione transferase subunits by using reverse-phase high-pressure liquid chromatography. Biochem J. 1987 Jul 15;245(2):423–428. [PMC free article] [PubMed]
  • Brockmöller J, Gross D, Kerb R, Drakoulis N, Roots I. Correlation between trans-stilbene oxide-glutathione conjugation activity and the deletion mutation in the glutathione S-transferase class mu gene detected by polymerase chain reaction. Biochem Pharmacol. 1992 Feb 4;43(3):647–650. [PubMed]
  • Groppi A, Coutelle C, Fleury B, Iron A, Begueret J, Couzigou P. Glutathione S-transferase class mu in French alcoholic cirrhotic patients. Hum Genet. 1991 Sep;87(5):628–630. [PubMed]
  • Hirvonen A, Husgafvel-Pursiainen K, Anttila S, Vainio H. The GSTM1 null genotype as a potential risk modifier for squamous cell carcinoma of the lung. Carcinogenesis. 1993 Jul;14(7):1479–1481. [PubMed]
  • Afanas'eva IS, Spitsyn VA. Nasledstvennyi polimorfizm glutation-S-transferazy pecheni cheloveka v norme i pri alkogol'nom gepatite. Genetika. 1990 Jul;26(7):1309–1315. [PubMed]
  • Evans DA, Seidegård J, Narayanan N. The GSTM1 genetic polymorphism in healthy Saudi Arabians and Filipinos, and Saudi Arabians with coronary atherosclerosis. Pharmacogenetics. 1996 Aug;6(4):365–367. [PubMed]
  • Board PG. Biochemical genetics of glutathione-S-transferase in man. Am J Hum Genet. 1981 Jan;33(1):36–43. [PMC free article] [PubMed]
  • Harada S, Abei M, Tanaka N, Agarwal DP, Goedde HW. Liver glutathione S-transferase polymorphism in Japanese and its pharmacogenetic importance. Hum Genet. 1987 Apr;75(4):322–325. [PubMed]
  • Omiecinski CJ, Aicher L, Holubkov R, Checkoway H. Human peripheral lymphocytes as indicators of microsomal epoxide hydrolase activity in liver and lung. Pharmacogenetics. 1993 Jun;3(3):150–158. [PubMed]
  • Hassett C, Robinson KB, Beck NB, Omiecinski CJ. The human microsomal epoxide hydrolase gene (EPHX1): complete nucleotide sequence and structural characterization. Genomics. 1994 Sep 15;23(2):433–442. [PubMed]
  • Vesell ES. Genetic factors that regulate cytosolic epoxide hydrolase activity in normal human lymphocytes. Ann Genet. 1991;34(3-4):167–172. [PubMed]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Science


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Gene
    Gene records that cite the current articles. Citations in Gene are added manually by NCBI or imported from outside public resources.
  • GEO Profiles
    GEO Profiles
    Gene Expression Omnibus (GEO) Profiles of molecular abundance data. The current articles are references on the Gene record associated with the GEO profile.
  • HomoloGene
    HomoloGene clusters of homologous genes and sequences that cite the current articles. These are references on the Gene and sequence records in the HomoloGene entry.
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...