• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. Aug 1, 1997; 25(15): 3051–3058.
PMCID: PMC146855

Telomere length regulation during postnatal development and ageing in Mus spretus.

Abstract

Telomere shortening has been causally implicated in replicative senescence in humans. To examine the relationship between telomere length and ageing in mice, we have utilized Mus spretus as a model species because it has telomere lengths of approximately the same length as humans. Telomere length and telomerase were analyzed from liver, kidney, spleen, brain and testis from >180 M.spretus male and female mice of different ages. Although telomere lengths for each tissue were heterogeneous, significant changes in telomere lengths were found in spleen and brain, but not in liver, testis or kidney. Telomerase activity was abundant in liver and testis, but weak to non-detectable in spleen, kidney and brain. Gender differences in mean terminal restriction fragment length were discovered in tissues from M.spretus and from M.spretus xC57BL/6 F1 mice, in which a M. spretus -sized telomeric smear could be measured. The comparison of the rank order of tissue telomere lengths within individual M. spretus showed that certain tissues tended to be longer than the others, and this ranking also extended to tissues of the M.spretus xC57BL/6 F1 mice. These data suggest that telomere lengths within individual tissues are regulated independently and are genetically controlled.

Full Text

The Full Text of this article is available as a PDF (326K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Meyne J, Ratliff RL, Moyzis RK. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7049–7053. [PMC free article] [PubMed]
  • Blackburn EH. Structure and function of telomeres. Nature. 1991 Apr 18;350(6319):569–573. [PubMed]
  • de Lange T. Human telomeres are attached to the nuclear matrix. EMBO J. 1992 Feb;11(2):717–724. [PMC free article] [PubMed]
  • Sen D, Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature. 1988 Jul 28;334(6180):364–366. [PubMed]
  • Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992 May;11(5):1921–1929. [PMC free article] [PubMed]
  • Counter CM, Botelho FM, Wang P, Harley CB, Bacchetti S. Stabilization of short telomeres and telomerase activity accompany immortalization of Epstein-Barr virus-transformed human B lymphocytes. J Virol. 1994 May;68(5):3410–3414. [PMC free article] [PubMed]
  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10114–10118. [PMC free article] [PubMed]
  • Allsopp RC, Harley CB. Evidence for a critical telomere length in senescent human fibroblasts. Exp Cell Res. 1995 Jul;219(1):130–136. [PubMed]
  • Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990 May 31;345(6274):458–460. [PubMed]
  • Vaziri H, Schächter F, Uchida I, Wei L, Zhu X, Effros R, Cohen D, Harley CB. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet. 1993 Apr;52(4):661–667. [PMC free article] [PubMed]
  • Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9857–9860. [PMC free article] [PubMed]
  • Watson JD. Origin of concatemeric T7 DNA. Nat New Biol. 1972 Oct 18;239(94):197–201. [PubMed]
  • Olovnikov AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973 Sep 14;41(1):181–190. [PubMed]
  • Harley CB. Telomere loss: mitotic clock or genetic time bomb? Mutat Res. 1991 Mar-Nov;256(2-6):271–282. [PubMed]
  • Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985 Dec;43(2 Pt 1):405–413. [PubMed]
  • Yu GL, Bradley JD, Attardi LD, Blackburn EH. In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature. 1990 Mar 8;344(6262):126–132. [PubMed]
  • Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP, Adams RR, Chang E, Allsopp RC, Yu J, et al. The RNA component of human telomerase. Science. 1995 Sep 1;269(5228):1236–1241. [PubMed]
  • Prowse KR, Avilion AA, Greider CW. Identification of a nonprocessive telomerase activity from mouse cells. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1493–1497. [PMC free article] [PubMed]
  • Blasco MA, Rizen M, Greider CW, Hanahan D. Differential regulation of telomerase activity and telomerase RNA during multi-stage tumorigenesis. Nat Genet. 1996 Feb;12(2):200–204. [PubMed]
  • Harrington L, McPhail T, Mar V, Zhou W, Oulton R, Bass MB, Arruda I, Robinson MO. A mammalian telomerase-associated protein. Science. 1997 Feb 14;275(5302):973–977. [PubMed]
  • Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990 Aug 30;346(6287):866–868. [PubMed]
  • Kipling D, Cooke HJ. Hypervariable ultra-long telomeres in mice. Nature. 1990 Sep 27;347(6291):400–402. [PubMed]
  • Starling JA, Maule J, Hastie ND, Allshire RC. Extensive telomere repeat arrays in mouse are hypervariable. Nucleic Acids Res. 1990 Dec 11;18(23):6881–6888. [PMC free article] [PubMed]
  • Broccoli D, Chong L, Oelmann S, Fernald AA, Marziliano N, van Steensel B, Kipling D, Le Beau MM, de Lange T. Comparison of the human and mouse genes encoding the telomeric protein, TRF1: chromosomal localization, expression and conserved protein domains. Hum Mol Genet. 1997 Jan;6(1):69–76. [PubMed]
  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994 Dec 23;266(5193):2011–2015. [PubMed]
  • Chang E, Harley CB. Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11190–11194. [PMC free article] [PubMed]
  • Prowse KR, Greider CW. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4818–4822. [PMC free article] [PubMed]
  • Chadeneau C, Siegel P, Harley CB, Muller WJ, Bacchetti S. Telomerase activity in normal and malignant murine tissues. Oncogene. 1995 Sep 7;11(5):893–898. [PubMed]
  • Gates MA, Thomas LB, Howard EM, Laywell ED, Sajin B, Faissner A, Götz B, Silver J, Steindler DA. Cell and molecular analysis of the developing and adult mouse subventricular zone of the cerebral hemispheres. J Comp Neurol. 1995 Oct 16;361(2):249–266. [PubMed]
  • Reznikov KY. Cell proliferation and cytogenesis in the mouse hippocampus. Adv Anat Embryol Cell Biol. 1991;122:1–74. [PubMed]
  • Blasco MA, Funk W, Villeponteau B, Greider CW. Functional characterization and developmental regulation of mouse telomerase RNA. Science. 1995 Sep 1;269(5228):1267–1270. [PubMed]
  • Delone GV, Uryvaeva IV, Koretskii VF, Brodskii V Ia. Analiz postnatal'nogo rosta pecheni myshi na osnove ucheta chisla gepatotsitov, ikh massy i ploidnosti. Ontogenez. 1987 May-Jun;18(3):304–308. [PubMed]
  • Hanai T. Light microscopic radioautographic study of DNA synthesis in the kidneys of aging mice. Cell Mol Biol (Noisy-le-grand) 1993 Feb;39(1):81–91. [PubMed]
  • Forni L. Strain differences in the postnatal development of the mouse splenic lymphoid system. Ann Inst Pasteur Immunol. 1988 May-Jun;139(3):257–266. [PubMed]
  • Morrison SJ, Prowse KR, Ho P, Weissman IL. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity. 1996 Sep;5(3):207–216. [PubMed]
  • Wood KA, Dipasquale B, Youle RJ. In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron. 1993 Oct;11(4):621–632. [PubMed]
  • von Zglinicki T, Saretzki G, Döcke W, Lotze C. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res. 1995 Sep;220(1):186–193. [PubMed]
  • Hirose F, Hotta Y, Yamaguchi M, Matsukage A. Difference in the expression level of DNA polymerase beta among mouse tissues: high expression in the pachytene spermatocyte. Exp Cell Res. 1989 Mar;181(1):169–180. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...