• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. Jul 1, 1997; 25(13): 2547–2561.
PMCID: PMC146782

Alternative poly(A) site selection in complex transcription units: means to an end?

Abstract

Many genes have been described and characterized which result in alternative polyadenylation site use at the 3'-end of their mRNAs based on the cellular environment. In this survey and summary article 95 genes are discussed in which alternative polyadenylation is a consequence of tandem arrays of poly(A) signals within a single 3'-untranslated region. An additional 31 genes are described in which polyadenylation at a promoter-proximal site competes with a splicing reaction to influence expression of multiple mRNAs. Some have a composite internal/terminal exon which can be differentially processed. Others contain alternative 3'-terminal exons, the first of which can be skipped in some cells. In some cases the mRNAs formed from these three classes of genes are differentially processed from the primary transcript during the cell cycle or in a tissue-specific or developmentally specific pattern. Immunoglobulin heavy chain genes have composite exons; regulated production of two different Ig mRNAs has been shown to involve B cell stage-specific changes in trans -acting factors involved in formation of the active polyadenylation complex. Changes in the activity of some of these same factors occur during viral infection and take-over of the cellular machinery, suggesting the potential applicability of at least some aspects of the Ig model. The differential expression of a number of genes that undergo alternative poly(A) site choice or polyadenylation/splicing competition could be regulated at the level of amounts and activities of either generic or tissue-specific polyadenylation factors and/or splicing factors.

Full Text

The Full Text of this article is available as a PDF (172K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Falck-Pedersen E, Logan J, Shenk T, Darnell JE., Jr Transcription termination within the E1A gene of adenovirus induced by insertion of the mouse beta-major globin terminator element. Cell. 1985 Apr;40(4):897–905. [PubMed]
  • Whitelaw E, Proudfoot N. Alpha-thalassaemia caused by a poly(A) site mutation reveals that transcriptional termination is linked to 3' end processing in the human alpha 2 globin gene. EMBO J. 1986 Nov;5(11):2915–2922. [PMC free article] [PubMed]
  • Connelly S, Manley JL. A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. Genes Dev. 1988 Apr;2(4):440–452. [PubMed]
  • Wickens M, Stephenson P. Role of the conserved AAUAAA sequence: four AAUAAA point mutants prevent messenger RNA 3' end formation. Science. 1984 Nov 30;226(4678):1045–1051. [PubMed]
  • Eckner R, Ellmeier W, Birnstiel ML. Mature mRNA 3' end formation stimulates RNA export from the nucleus. EMBO J. 1991 Nov;10(11):3513–3522. [PMC free article] [PubMed]
  • Huang Y, Carmichael GG. Role of polyadenylation in nucleocytoplasmic transport of mRNA. Mol Cell Biol. 1996 Apr;16(4):1534–1542. [PMC free article] [PubMed]
  • Huang Y, Carmichael GG. A suboptimal 5' splice site is a cis-acting determinant of nuclear export of polyomavirus late mRNAs. Mol Cell Biol. 1996 Nov;16(11):6046–6054. [PMC free article] [PubMed]
  • McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, Patterson SD, Wickens M, Bentley DL. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature. 1997 Jan 23;385(6614):357–361. [PubMed]
  • Edwalds-Gilbert G, Prescott J, Falck-Pedersen E. 3' RNA processing efficiency plays a primary role in generating termination-competent RNA polymerase II elongation complexes. Mol Cell Biol. 1993 Jun;13(6):3472–3480. [PMC free article] [PubMed]
  • Denome RM, Cole CN. Patterns of polyadenylation site selection in gene constructs containing multiple polyadenylation signals. Mol Cell Biol. 1988 Nov;8(11):4829–4839. [PMC free article] [PubMed]
  • Curtis D, Lehmann R, Zamore PD. Translational regulation in development. Cell. 1995 Apr 21;81(2):171–178. [PubMed]
  • Ross J. mRNA stability in mammalian cells. Microbiol Rev. 1995 Sep;59(3):423–450. [PMC free article] [PubMed]
  • Sachs A, Wahle E. Poly(A) tail metabolism and function in eucaryotes. J Biol Chem. 1993 Nov 5;268(31):22955–22958. [PubMed]
  • Ford LP, Bagga PS, Wilusz J. The poly(A) tail inhibits the assembly of a 3'-to-5' exonuclease in an in vitro RNA stability system. Mol Cell Biol. 1997 Jan;17(1):398–406. [PMC free article] [PubMed]
  • Chabot B. Directing alternative splicing: cast and scenarios. Trends Genet. 1996 Nov;12(11):472–478. [PubMed]
  • Sheets MD, Ogg SC, Wickens MP. Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic Acids Res. 1990 Oct 11;18(19):5799–5805. [PMC free article] [PubMed]
  • Gil A, Proudfoot NJ. A sequence downstream of AAUAAA is required for rabbit beta-globin mRNA 3'-end formation. Nature. 312(5993):473–474. [PubMed]
  • Hart RP, McDevitt MA, Ali H, Nevins JR. Definition of essential sequences and functional equivalence of elements downstream of the adenovirus E2A and the early simian virus 40 polyadenylation sites. Mol Cell Biol. 1985 Nov;5(11):2975–2983. [PMC free article] [PubMed]
  • McDevitt MA, Hart RP, Wong WW, Nevins JR. Sequences capable of restoring poly(A) site function define two distinct downstream elements. EMBO J. 1986 Nov;5(11):2907–2913. [PMC free article] [PubMed]
  • Sadofsky M, Alwine JC. Sequences on the 3' side of hexanucleotide AAUAAA affect efficiency of cleavage at the polyadenylation site. Mol Cell Biol. 1984 Aug;4(8):1460–1468. [PMC free article] [PubMed]
  • Chen F, MacDonald CC, Wilusz J. Cleavage site determinants in the mammalian polyadenylation signal. Nucleic Acids Res. 1995 Jul 25;23(14):2614–2620. [PMC free article] [PubMed]
  • Brown PH, Tiley LS, Cullen BR. Effect of RNA secondary structure on polyadenylation site selection. Genes Dev. 1991 Jul;5(7):1277–1284. [PubMed]
  • Carswell S, Alwine JC. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 1989 Oct;9(10):4248–4258. [PMC free article] [PubMed]
  • DeZazzo JD, Imperiale MJ. Sequences upstream of AAUAAA influence poly(A) site selection in a complex transcription unit. Mol Cell Biol. 1989 Nov;9(11):4951–4961. [PMC free article] [PubMed]
  • Prescott J, Falck-Pedersen E. Sequence elements upstream of the 3' cleavage site confer substrate strength to the adenovirus L1 and L3 polyadenylation sites. Mol Cell Biol. 1994 Jul;14(7):4682–4693. [PMC free article] [PubMed]
  • Russnak R, Ganem D. Sequences 5' to the polyadenylation signal mediate differential poly(A) site use in hepatitis B viruses. Genes Dev. 1990 May;4(5):764–776. [PubMed]
  • Valsamakis A, Zeichner S, Carswell S, Alwine JC. The human immunodeficiency virus type 1 polyadenylylation signal: a 3' long terminal repeat element upstream of the AAUAAA necessary for efficient polyadenylylation. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2108–2112. [PMC free article] [PubMed]
  • Miller JT, Stoltzfus CM. Two distant upstream regions containing cis-acting signals regulating splicing facilitate 3'-end processing of avian sarcoma virus RNA. J Virol. 1992 Jul;66(7):4242–4251. [PMC free article] [PubMed]
  • Kurkulos M, Weinberg JM, Pepling ME, Mount SM. Polyadenylylation in copia requires unusually distant upstream sequences. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3038–3042. [PMC free article] [PubMed]
  • Lutz CS, Alwine JC. Direct interaction of the U1 snRNP-A protein with the upstream efficiency element of the SV40 late polyadenylation signal. Genes Dev. 1994 Mar 1;8(5):576–586. [PubMed]
  • Lutz CS, Murthy KG, Schek N, O'Connor JP, Manley JL, Alwine JC. Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage-polyadenylation specificity factor increases polyadenylation efficiency in vitro. Genes Dev. 1996 Feb 1;10(3):325–337. [PubMed]
  • Moreira A, Wollerton M, Monks J, Proudfoot NJ. Upstream sequence elements enhance poly(A) site efficiency of the C2 complement gene and are phylogenetically conserved. EMBO J. 1995 Aug 1;14(15):3809–3819. [PMC free article] [PubMed]
  • Hall B, Milcarek C. Sequence and polyadenylation site determination of the murine immunoglobulin gamma 2a membrane 3' untranslated region. Mol Immunol. 1989 Sep;26(9):819–826. [PubMed]
  • Flaspohler JA, Boczkowski D, Hall BL, Milcarek C. The 3'-untranslated region of membrane exon 2 from the gamma 2a immunoglobulin gene contributes to efficient transcription termination. J Biol Chem. 1995 May 19;270(20):11903–11911. [PubMed]
  • Wahle E, Keller W. The biochemistry of 3'-end cleavage and polyadenylation of messenger RNA precursors. Annu Rev Biochem. 1992;61:419–440. [PubMed]
  • Keller W. No end yet to messenger RNA 3' processing! Cell. 1995 Jun 16;81(6):829–832. [PubMed]
  • Manley JL. A complex protein assembly catalyzes polyadenylation of mRNA precursors. Curr Opin Genet Dev. 1995 Apr;5(2):222–228. [PubMed]
  • Proudfoot N. Ending the message is not so simple. Cell. 1996 Nov 29;87(5):779–781. [PubMed]
  • Bienroth S, Wahle E, Suter-Crazzolara C, Keller W. Purification of the cleavage and polyadenylation factor involved in the 3'-processing of messenger RNA precursors. J Biol Chem. 1991 Oct 15;266(29):19768–19776. [PubMed]
  • Gilmartin GM, Nevins JR. An ordered pathway of assembly of components required for polyadenylation site recognition and processing. Genes Dev. 1989 Dec;3(12B):2180–2190. [PubMed]
  • Murthy KG, Manley JL. Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus. J Biol Chem. 1992 Jul 25;267(21):14804–14811. [PubMed]
  • Gilmartin GM, Nevins JR. Molecular analyses of two poly(A) site-processing factors that determine the recognition and efficiency of cleavage of the pre-mRNA. Mol Cell Biol. 1991 May;11(5):2432–2438. [PMC free article] [PubMed]
  • Christofori G, Keller W. Poly(A) polymerase purified from HeLa cell nuclear extract is required for both cleavage and polyadenylation of pre-mRNA in vitro. Mol Cell Biol. 1989 Jan;9(1):193–203. [PMC free article] [PubMed]
  • Martin G, Keller W. Mutational analysis of mammalian poly(A) polymerase identifies a region for primer binding and catalytic domain, homologous to the family X polymerases, and to other nucleotidyltransferases. EMBO J. 1996 May 15;15(10):2593–2603. [PMC free article] [PubMed]
  • Raabe T, Bollum FJ, Manley JL. Primary structure and expression of bovine poly(A) polymerase. Nature. 1991 Sep 19;353(6341):229–234. [PubMed]
  • Takagaki Y, Ryner LC, Manley JL. Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation. Cell. 1988 Mar 11;52(5):731–742. [PubMed]
  • Colgan DF, Murthy KG, Prives C, Manley JL. Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature. 1996 Nov 21;384(6606):282–285. [PubMed]
  • Christofori G, Keller W. 3' cleavage and polyadenylation of mRNA precursors in vitro requires a poly(A) polymerase, a cleavage factor, and a snRNP. Cell. 1988 Sep 9;54(6):875–889. [PubMed]
  • Rüegsegger U, Beyer K, Keller W. Purification and characterization of human cleavage factor Im involved in the 3' end processing of messenger RNA precursors. J Biol Chem. 1996 Mar 15;271(11):6107–6113. [PubMed]
  • Wahle E. A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. Cell. 1991 Aug 23;66(4):759–768. [PubMed]
  • Manley JL, Takagaki Y. The end of the message--another link between yeast and mammals. Science. 1996 Nov 29;274(5292):1481–1482. [PubMed]
  • Keller W, Bienroth S, Lang KM, Christofori G. Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3' processing signal AAUAAA. EMBO J. 1991 Dec;10(13):4241–4249. [PMC free article] [PubMed]
  • Jenny A, Hauri HP, Keller W. Characterization of cleavage and polyadenylation specificity factor and cloning of its 100-kilodalton subunit. Mol Cell Biol. 1994 Dec;14(12):8183–8190. [PMC free article] [PubMed]
  • MacDonald CC, Wilusz J, Shenk T. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol. 1994 Oct;14(10):6647–6654. [PMC free article] [PubMed]
  • Weiss EA, Gilmartin GM, Nevins JR. Poly(A) site efficiency reflects the stability of complex formation involving the downstream element. EMBO J. 1991 Jan;10(1):215–219. [PMC free article] [PubMed]
  • Wilusz J, Shenk T. A uridylate tract mediates efficient heterogeneous nuclear ribonucleoprotein C protein-RNA cross-linking and functionally substitutes for the downstream element of the polyadenylation signal. Mol Cell Biol. 1990 Dec;10(12):6397–6407. [PMC free article] [PubMed]
  • Takagaki Y, MacDonald CC, Shenk T, Manley JL. The human 64-kDa polyadenylylation factor contains a ribonucleoprotein-type RNA binding domain and unusual auxiliary motifs. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1403–1407. [PMC free article] [PubMed]
  • Takagaki Y, Manley JL. A human polyadenylation factor is a G protein beta-subunit homologue. J Biol Chem. 1992 Nov 25;267(33):23471–23474. [PubMed]
  • Takagaki Y, Manley JL. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature. 1994 Dec 1;372(6505):471–474. [PubMed]
  • Gunderson SI, Vagner S, Polycarpou-Schwarz M, Mattaj IW. Involvement of the carboxyl terminus of vertebrate poly(A) polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation. Genes Dev. 1997 Mar 15;11(6):761–773. [PubMed]
  • Berget SM. Exon recognition in vertebrate splicing. J Biol Chem. 1995 Feb 10;270(6):2411–2414. [PubMed]
  • Gunderson SI, Beyer K, Martin G, Keller W, Boelens WC, Mattaj LW. The human U1A snRNP protein regulates polyadenylation via a direct interaction with poly(A) polymerase. Cell. 1994 Feb 11;76(3):531–541. [PubMed]
  • Wassarman KM, Steitz JA. Association with terminal exons in pre-mRNAs: a new role for the U1 snRNP? Genes Dev. 1993 Apr;7(4):647–659. [PubMed]
  • Frayne EG, Leys EJ, Crouse GF, Hook AG, Kellems RE. Transcription of the mouse dihydrofolate reductase gene proceeds unabated through seven polyadenylation sites and terminates near a region of repeated DNA. Mol Cell Biol. 1984 Dec;4(12):2921–2924. [PMC free article] [PubMed]
  • Kaufman RJ, Sharp PA. Growth-dependent expression of dihydrofolate reductase mRNA from modular cDNA genes. Mol Cell Biol. 1983 Sep;3(9):1598–1608. [PMC free article] [PubMed]
  • Miyamoto S, Chiorini JA, Urcelay E, Safer B. Regulation of gene expression for translation initiation factor eIF-2 alpha: importance of the 3' untranslated region. Biochem J. 1996 May 1;315(Pt 3):791–798. [PMC free article] [PubMed]
  • Coleman MS, Hutton JJ, Bollum FJ. Terminal riboadenylate transferase in human lymphocytes. Nature. 1974 Mar 29;248(447):407–409. [PubMed]
  • Hauser H, Knippers R, Schäfer KP. Increased rate of RNA-polyadenylation. An early response in Concanavalin A activated lymphocytes. Exp Cell Res. 1978 Jan;111(1):175–184. [PubMed]
  • Benz EW, Jr, Getz MJ, Wells DJ, Moses HL. Nuclear RNA polymerase activities and poly(A)-containing mRNA accumulation in cultured AKR mouse embryo cells stimulated to proliferate. Exp Cell Res. 1977 Aug;108(1):157–165. [PubMed]
  • Takagaki Y, Seipelt RL, Peterson ML, Manley JL. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell. 1996 Nov 29;87(5):941–952. [PubMed]
  • Niwa M, MacDonald CC, Berget SM. Are vertebrate exons scanned during splice-site selection? Nature. 1992 Nov 19;360(6401):277–280. [PubMed]
  • Furth PA, Choe WT, Rex JH, Byrne JC, Baker CC. Sequences homologous to 5' splice sites are required for the inhibitory activity of papillomavirus late 3' untranslated regions. Mol Cell Biol. 1994 Aug;14(8):5278–5289. [PMC free article] [PubMed]
  • Alt FW, Bothwell AL, Knapp M, Siden E, Mather E, Koshland M, Baltimore D. Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3' ends. Cell. 1980 Jun;20(2):293–301. [PubMed]
  • Rogers J, Early P, Carter C, Calame K, Bond M, Hood L, Wall R. Two mRNAs with different 3' ends encode membrane-bound and secreted forms of immunoglobulin mu chain. Cell. 1980 Jun;20(2):303–312. [PubMed]
  • Rogers J, Choi E, Souza L, Carter C, Word C, Kuehl M, Eisenberg D, Wall R. Gene segments encoding transmembrane carboxyl termini of immunoglobulin gamma chains. Cell. 1981 Oct;26(1 Pt 1):19–27. [PubMed]
  • Genovese C, Harrold S, Milcarek C. Differential mRNA stabilities affect mRNA levels in mutant mouse myeloma cells. Somat Cell Mol Genet. 1991 Jan;17(1):69–81. [PubMed]
  • Jäck HM, Wabl M. Immunoglobulin mRNA stability varies during B lymphocyte differentiation. EMBO J. 1988 Apr;7(4):1041–1046. [PMC free article] [PubMed]
  • Mason JO, Williams GT, Neuberger MS. The half-life of immunoglobulin mRNA increases during B-cell differentiation: a possible role for targeting to membrane-bound polysomes. Genes Dev. 1988 Aug;2(8):1003–1011. [PubMed]
  • Reed DJ, Hawley J, Dang T, Yuan D. Role of differential mRNA stability in the regulated expression of IgM and IgD. J Immunol. 1994 Jun 1;152(11):5330–5336. [PubMed]
  • Milcarek C, Suda-Hartman M, Croll SC. Changes in abundance of IgG 2a mRNA in the nucleus and cytoplasm of a murine B-lymphoma before and after fusion to a myeloma cell. Mol Immunol. 1996 May-Jun;33(7-8):691–701. [PubMed]
  • Galli G, Guise JW, McDevitt MA, Tucker PW, Nevins JR. Relative position and strengths of poly(A) sites as well as transcription termination are critical to membrane versus secreted mu-chain expression during B-cell development. Genes Dev. 1987 Jul;1(5):471–481. [PubMed]
  • Guise JW, Lim PL, Yuan D, Tucker PW. Alternative expression of secreted and membrane forms of immunoglobulin mu-chain is regulated by transcriptional termination in stable plasmacytoma transfectants. J Immunol. 1988 Jun 1;140(11):3988–3994. [PubMed]
  • Yuan D, Tucker PW. Transcriptional regulation of the mu-delta heavy chain locus in normal murine B lymphocytes. J Exp Med. 1984 Aug 1;160(2):564–583. [PMC free article] [PubMed]
  • Yuan D, Dang T, Sanderson C. Regulation of Ig H chain gene transcription by IL-5. J Immunol. 1990 Nov 15;145(10):3491–3496. [PubMed]
  • Flaspohler JA, Milcarek C. Myelomas and lymphomas expressing the Ig gamma 2a H chain gene have similar transcription termination regions. J Immunol. 1990 Apr 1;144(7):2802–2810. [PubMed]
  • Lebman DA, Park MJ, Fatica R, Zhang Z. Regulation of usage of membrane and secreted 3' termini of alpha mRNA differs from mu mRNA. J Immunol. 1992 May 15;148(10):3282–3289. [PubMed]
  • Kelley DE, Perry RP. Transcriptional and posttranscriptional control of immunoglobulin mRNA production during B lymphocyte development. Nucleic Acids Res. 1986 Jul 11;14(13):5431–5447. [PMC free article] [PubMed]
  • Moore BB, Tan J, Lim PL, Tucker PW, Yuan D. Regulatory elements necessary for termination of transcription within the Ig heavy chain gene locus. Nucleic Acids Res. 1993 Mar 25;21(6):1481–1488. [PMC free article] [PubMed]
  • Milcarek C, Hall B. Cell-specific expression of secreted versus membrane forms of immunoglobulin gamma 2b mRNA involves selective use of alternate polyadenylation sites. Mol Cell Biol. 1985 Oct;5(10):2514–2520. [PMC free article] [PubMed]
  • Kobrin BJ, Milcarek C, Morrison SL. Sequences near the 3' secretion-specific polyadenylation site influence levels of secretion-specific and membrane-specific IgG2b mRNA in myeloma cells. Mol Cell Biol. 1986 May;6(5):1687–1697. [PMC free article] [PubMed]
  • Nishikura K, Vuocolo GA. Synthesis of two mRNAs by utilization of alternate polyadenylation sites: expression of SV40-mouse immunoglobulin mu chain gene recombinants in Cos monkey cells. EMBO J. 1984 Apr;3(4):689–699. [PMC free article] [PubMed]
  • Peterson ML, Perry RP. Regulated production of mu m and mu s mRNA requires linkage of the poly(A) addition sites and is dependent on the length of the mu s-mu m intron. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8883–8887. [PMC free article] [PubMed]
  • Tsurushita N, Avdalovic NM, Korn LJ. Regulation of differential processing of mouse immunoglobulin mu heavy-chain mRNA. Nucleic Acids Res. 1987 Jun 11;15(11):4603–4615. [PMC free article] [PubMed]
  • Peterson ML, Gimmi ER, Perry RP. The developmentally regulated shift from membrane to secreted mu mRNA production is accompanied by an increase in cleavage-polyadenylation efficiency but no measurable change in splicing efficiency. Mol Cell Biol. 1991 Apr;11(4):2324–2327. [PMC free article] [PubMed]
  • Seipelt RL, Peterson ML. Alternative processing of IgA pre-mRNA responds like IgM to alterations in the efficiency of the competing splice and cleavage-polyadenylation reactions. Mol Immunol. 1995 Mar;32(4):277–285. [PubMed]
  • Lassman CR, Milcarek C. Regulated expression of the mouse gamma 2b Ig H chain gene is influenced by polyA site order and strength. J Immunol. 1992 Apr 15;148(8):2578–2585. [PubMed]
  • Lassman CR, Matis S, Hall BL, Toppmeyer DL, Milcarek C. Plasma cell-regulated polyadenylation at the Ig gamma 2b secretion-specific poly(A) site. J Immunol. 1992 Feb 15;148(4):1251–1260. [PubMed]
  • Matis SA, Martincic K, Milcarek C. B-lineage regulated polyadenylation occurs on weak poly(A) sites regardless of sequence composition at the cleavage and downstream regions. Nucleic Acids Res. 1996 Dec 1;24(23):4684–4692. [PMC free article] [PubMed]
  • Peterson ML. Regulated immunoglobulin (Ig) RNA processing does not require specific cis-acting sequences: non-Ig RNA can be alternatively processed in B cells and plasma cells. Mol Cell Biol. 1994 Dec;14(12):7891–7898. [PMC free article] [PubMed]
  • Brown SL, Morrison SL. Developmental regulation of membrane and secretory Ig gamma 2b mRNA. J Immunol. 1989 Mar 15;142(6):2072–2080. [PubMed]
  • Tsurushita N, Korn LJ. Effects of intron length on differential processing of mouse mu heavy-chain mRNA. Mol Cell Biol. 1987 Jul;7(7):2602–2605. [PMC free article] [PubMed]
  • Watakabe A, Sakamoto H, Shimura Y. Repositioning of an alternative exon sequence of mouse IgM pre-mRNA activates splicing of the preceding intron. Gene Expr. 1991;1(3):175–184. [PubMed]
  • Edwalds-Gilbert G, Milcarek C. Regulation of poly(A) site use during mouse B-cell development involves a change in the binding of a general polyadenylation factor in a B-cell stage-specific manner. Mol Cell Biol. 1995 Nov;15(11):6420–6429. [PMC free article] [PubMed]
  • Edwalds-Gilbert G, Milcarek C. The binding of a subunit of the general polyadenylation factor cleavage-polyadenylation specificity factor (CPSF) to polyadenylation sites changes during B cell development. Nucleic Acids Symp Ser. 1995;(33):229–233. [PubMed]
  • Yan DH, Weiss EA, Nevins JR. Identification of an activity in B-cell extracts that selectively impairs the formation of an immunoglobulin mu s poly(A) site processing complex. Mol Cell Biol. 1995 Apr;15(4):1901–1906. [PMC free article] [PubMed]
  • Phillips C, Schimpl A, Dietrich-Goetz W, Clements JB, Virtanen A. Inducible nuclear factors binding the IgM heavy chain pre-mRNA secretory poly(A) site. Eur J Immunol. 1996 Dec;26(12):3144–3152. [PubMed]
  • Torres RM, Clark EA. Differential increase of an alternatively polyadenylated mRNA species of murine CD40 upon B lymphocyte activation. J Immunol. 1992 Jan 15;148(2):620–626. [PubMed]
  • Mertens L, Van den Bosch L, Verboomen H, Wuytack F, De Smedt H, Eggermont J. Sequence and spatial requirements for regulated muscle-specific processing of the sarco/endoplasmic reticulum Ca(2+)-ATPase 2 gene transcript. J Biol Chem. 1995 May 5;270(18):11004–11011. [PubMed]
  • Van den Bosch L, Mertens L, Cavaloc Y, Peterson M, Wuytack F, Eggermont J. Alternative processing of the sarco/endoplasmic reticulum Ca(2+)-ATPase transcripts during muscle differentiation is a specifically regulated process. Biochem J. 1996 Aug 1;317(Pt 3):647–651. [PMC free article] [PubMed]
  • Kan JL, Moran RG. Analysis of a mouse gene encoding three steps of purine synthesis reveals use of an intronic polyadenylation signal without alternative exon usage. J Biol Chem. 1995 Jan 27;270(4):1823–1832. [PubMed]
  • Laudet V, Begue A, Henry-Duthoit C, Joubel A, Martin P, Stehelin D, Saule S. Genomic organization of the human thyroid hormone receptor alpha (c-erbA-1) gene. Nucleic Acids Res. 1991 Mar 11;19(5):1105–1112. [PMC free article] [PubMed]
  • Leonard JL, Farwell AP, Yen PM, Chin WW, Stula M. Differential expression of thyroid hormone receptor isoforms in neurons and astroglial cells. Endocrinology. 1994 Aug;135(2):548–555. [PubMed]
  • Munroe SH, Lazar MA. Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J Biol Chem. 1991 Nov 25;266(33):22083–22086. [PubMed]
  • Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature. 1982 Jul 15;298(5871):240–244. [PubMed]
  • Amara SG, Evans RM, Rosenfeld MG. Calcitonin/calcitonin gene-related peptide transcription unit: tissue-specific expression involves selective use of alternative polyadenylation sites. Mol Cell Biol. 1984 Oct;4(10):2151–2160. [PMC free article] [PubMed]
  • Crenshaw EB, 3rd, Russo AF, Swanson LW, Rosenfeld MG. Neuron-specific alternative RNA processing in transgenic mice expressing a metallothionein-calcitonin fusion gene. Cell. 1987 May 8;49(3):389–398. [PubMed]
  • Lou H, Yang Y, Cote GJ, Berget SM, Gagel RF. An intron enhancer containing a 5' splice site sequence in the human calcitonin/calcitonin gene-related peptide gene. Mol Cell Biol. 1995 Dec;15(12):7135–7142. [PMC free article] [PubMed]
  • Lou H, Gagel RF, Berget SM. An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev. 1996 Jan 15;10(2):208–219. [PubMed]
  • Leff SE, Evans RM, Rosenfeld MG. Splice commitment dictates neuron-specific alternative RNA processing in calcitonin/CGRP gene expression. Cell. 1987 Feb 13;48(3):517–524. [PubMed]
  • Baker BS. Sex in flies: the splice of life. Nature. 1989 Aug 17;340(6234):521–524. [PubMed]
  • Hedley ML, Maniatis T. Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro. Cell. 1991 May 17;65(4):579–586. [PubMed]
  • Lynch KW, Maniatis T. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev. 1996 Aug 15;10(16):2089–2101. [PubMed]
  • Niwa M, Rose SD, Berget SM. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev. 1990 Sep;4(9):1552–1559. [PubMed]
  • DeZazzo JD, Falck-Pedersen E, Imperiale MJ. Sequences regulating temporal poly(A) site switching in the adenovirus major late transcription unit. Mol Cell Biol. 1991 Dec;11(12):5977–5984. [PMC free article] [PubMed]
  • Falck-Pedersen E, Logan J. Regulation of poly(A) site selection in adenovirus. J Virol. 1989 Feb;63(2):532–541. [PMC free article] [PubMed]
  • Gilmartin GM, Hung SL, DeZazzo JD, Fleming ES, Imperiale MJ. Sequences regulating poly(A) site selection within the adenovirus major late transcription unit influence the interaction of constitutive processing factors with the pre-mRNA. J Virol. 1996 Mar;70(3):1775–1783. [PMC free article] [PubMed]
  • Larsson S, Svensson C, Akusjärvi G. Control of adenovirus major late gene expression at multiple levels. J Mol Biol. 1992 May 20;225(2):287–298. [PubMed]
  • Mann KP, Weiss EA, Nevins JR. Alternative poly(A) site utilization during adenovirus infection coincides with a decrease in the activity of a poly(A) site processing factor. Mol Cell Biol. 1993 Apr;13(4):2411–2419. [PMC free article] [PubMed]
  • Prescott JC, Falck-Pedersen E. Varied poly(A) site efficiency in the adenovirus major late transcription unit. J Biol Chem. 1992 Apr 25;267(12):8175–8181. [PubMed]
  • Cook WJ, Coen DM. Temporal regulation of herpes simplex virus type 1 UL24 mRNA expression via differential polyadenylation. Virology. 1996 Apr 1;218(1):204–213. [PubMed]
  • Hardy WR, Sandri-Goldin RM. Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J Virol. 1994 Dec;68(12):7790–7799. [PMC free article] [PubMed]
  • McGregor F, Phelan A, Dunlop J, Clements JB. Regulation of herpes simplex virus poly (A) site usage and the action of immediate-early protein IE63 in the early-late switch. J Virol. 1996 Mar;70(3):1931–1940. [PMC free article] [PubMed]
  • McLauchlan J, Simpson S, Clements JB. Herpes simplex virus induces a processing factor that stimulates poly(A) site usage. Cell. 1989 Dec 22;59(6):1093–1105. [PubMed]
  • McLauchlan J, Phelan A, Loney C, Sandri-Goldin RM, Clements JB. Herpes simplex virus IE63 acts at the posttranscriptional level to stimulate viral mRNA 3' processing. J Virol. 1992 Dec;66(12):6939–6945. [PMC free article] [PubMed]
  • Phelan A, Carmo-Fonseca M, McLaughlan J, Lamond AI, Clements JB. A herpes simplex virus type 1 immediate-early gene product, IE63, regulates small nuclear ribonucleoprotein distribution. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9056–9060. [PMC free article] [PubMed]
  • Sandri-Goldin RM, Mendoza GE. A herpesvirus regulatory protein appears to act post-transcriptionally by affecting mRNA processing. Genes Dev. 1992 May;6(5):848–863. [PubMed]
  • Zhang F, Cole CN. Identification of a complex associated with processing and polyadenylation in vitro of herpes simplex virus type 1 thymidine kinase precursor RNA. Mol Cell Biol. 1987 Sep;7(9):3277–3286. [PMC free article] [PubMed]
  • Gilmartin GM, Fleming ES, Oetjen J, Graveley BR. CPSF recognition of an HIV-1 mRNA 3'-processing enhancer: multiple sequence contacts involved in poly(A) site definition. Genes Dev. 1995 Jan 1;9(1):72–83. [PubMed]
  • Ashe MP, Griffin P, James W, Proudfoot NJ. Poly(A) site selection in the HIV-1 provirus: inhibition of promoter-proximal polyadenylation by the downstream major splice donor site. Genes Dev. 1995 Dec 1;9(23):3008–3025. [PubMed]
  • Preker PJ, Lingner J, Minvielle-Sebastia L, Keller W. The FIP1 gene encodes a component of a yeast pre-mRNA polyadenylation factor that directly interacts with poly(A) polymerase. Cell. 1995 May 5;81(3):379–389. [PubMed]
  • Price SR, Nightingale MS, Bobak DA, Tsuchiya M, Moss J, Vaughan M. Conservation of a 23-kDa human transplantation antigen in mammalian species. Genomics. 1992 Dec;14(4):959–964. [PubMed]
  • Gotlib RW, Bishop DF, Wang AM, Zeidner KM, Ioannou YA, Adler DA, Disteche CM, Desnick RJ. The entire genomic sequence and cDNA expression of mouse alpha-galactosidase A. Biochem Mol Med. 1996 Apr;57(2):139–148. [PubMed]
  • Li Y, Camp S, Rachinsky TL, Getman D, Taylor P. Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression. J Biol Chem. 1991 Dec 5;266(34):23083–23090. [PubMed]
  • Li Y, Camp S, Taylor P. Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J Biol Chem. 1993 Mar 15;268(8):5790–5797. [PubMed]
  • Tanimoto K, Tamura K, Ueno N, Usuki S, Murakami K, Fukamizu A. Regulation of activin beta A mRNA level by cAMP. Biochem Biophys Res Commun. 1992 Jan 31;182(2):773–778. [PubMed]
  • Tanimoto K, Murakami K, Fukamizu A. Possible roles of the 3'-flanking sequences of the human activin beta A subunit gene in its expression. Arch Biochem Biophys. 1993 May;302(2):409–416. [PubMed]
  • Nevins JR, Chen-Kiang S. Processing of adenovirus nuclear RNA to mRNA. Adv Virus Res. 1981;26:1–35. [PubMed]
  • Mishima K, Price SR, Nightingale MS, Kousvelari E, Moss J, Vaughan M. Regulation of ADP-ribosylation factor (ARF) expression. Cross-species conservation of the developmental and tissue-specific alternative polyadenylation of ARF 4 mRNA. J Biol Chem. 1992 Nov 25;267(33):24109–24116. [PubMed]
  • Lee CM, Haun RS, Tsai SC, Moss J, Vaughan M. Characterization of the human gene encoding ADP-ribosylation factor 1, a guanine nucleotide-binding activator of cholera toxin. J Biol Chem. 1992 May 5;267(13):9028–9034. [PubMed]
  • Maine AB, Stauffer JK, Tolan DR, Ciejek-Baez E. Unique use of alternative polyadenylation signals in the mouse aldolase B gene. Biochim Biophys Acta. 1992 Jan 6;1129(2):243–245. [PubMed]
  • Kojima T, Inazawa J, Takamatsu J, Rosenberg RD, Saito H. Human ryudocan core protein: molecular cloning and characterization of the cDNA, and chromosomal localization of the gene. Biochem Biophys Res Commun. 1993 Feb 15;190(3):814–822. [PubMed]
  • Grover J, Roughley PJ. Expression of cell-surface proteoglycan mRNA by human articular chondrocytes. Biochem J. 1995 Aug 1;309(Pt 3):963–968. [PMC free article] [PubMed]
  • de Sauvage F, Kruys V, Marinx O, Huez G, Octave JN. Alternative polyadenylation of the amyloid protein precursor mRNA regulates translation. EMBO J. 1992 Aug;11(8):3099–3103. [PMC free article] [PubMed]
  • Faber PW, van Rooij HC, van der Korput HA, Baarends WM, Brinkmann AO, Grootegoed JA, Trapman J. Characterization of the human androgen receptor transcription unit. J Biol Chem. 1991 Jun 15;266(17):10743–10749. [PubMed]
  • Thekkumkara TJ, Livingston W, 3rd, Kumar RS, Sen GC. Use of alternative polyadenylation sites for tissue-specific transcription of two angiotensin-converting enzyme mRNAs. Nucleic Acids Res. 1992 Feb 25;20(4):683–687. [PMC free article] [PubMed]
  • Birkenmeier CS, White RA, Peters LL, Hall EJ, Lux SE, Barker JE. Complex patterns of sequence variation and multiple 5' and 3' ends are found among transcripts of the erythroid ankyrin gene. J Biol Chem. 1993 May 5;268(13):9533–9540. [PubMed]
  • Heinemann T, Metzger S, Fisher EA, Breslow JL, Huang LS. Alternative polyadenylation of apolipoprotein B RNA is a major cause of B-48 protein formation in rat hepatoma cell lines transfected with human apoB-100 minigenes. J Lipid Res. 1994 Dec;35(12):2200–2211. [PubMed]
  • Gieselmann V, Polten A, Kreysing J, von Figura K. Arylsulfatase A pseudodeficiency: loss of a polyadenylylation signal and N-glycosylation site. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9436–9440. [PMC free article] [PubMed]
  • Giger RJ, Vogt L, Zuellig RA, Rader C, Henehan-Beatty A, Wolfer DP, Sonderegger P. The gene of chicken axonin-1. Complete structure and analysis of the promoter. Eur J Biochem. 1995 Feb 1;227(3):617–628. [PubMed]
  • Lee MG, Lewis SA, Wilde CD, Cowan NJ. Evolutionary history of a multigene family: an expressed human beta-tubulin gene and three processed pseudogenes. Cell. 1983 Jun;33(2):477–487. [PubMed]
  • Wu Q, Krainer AR. U1-mediated exon definition interactions between AT-AC and GT-AG introns. Science. 1996 Nov 8;274(5289):1005–1008. [PubMed]
  • Parnes JR, Robinson RR, Seidman JG. Multiple mRNA species with distinct 3' termini are transcribed from the beta 2-microglobulin gene. Nature. 302(5907):449–452. [PubMed]
  • Granneman JG, Lahners KN. Analysis of human and rodent beta 3-adrenergic receptor messenger ribonucleic acids. Endocrinology. 1994 Sep;135(3):1025–1031. [PubMed]
  • Gallagher PG, Forget BG. Structure, organization, and expression of the human band 7.2b gene, a candidate gene for hereditary hydrocytosis. J Biol Chem. 1995 Nov 3;270(44):26358–26363. [PubMed]
  • Timmusk T, Palm K, Metsis M, Reintam T, Paalme V, Saarma M, Persson H. Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron. 1993 Mar;10(3):475–489. [PubMed]
  • Aulak KS, Liu J, Wu J, Hyatt SL, Puppi M, Henning SJ, Hatzoglou M. Molecular sites of regulation of expression of the rat cationic amino acid transporter gene. J Biol Chem. 1996 Nov 22;271(47):29799–29806. [PubMed]
  • Newman B, Dai Y. Transcription of c-mos protooncogene in the pig involves both tissue-specific promoters and alternative polyadenylation sites. Mol Reprod Dev. 1996 Jul;44(3):275–288. [PubMed]
  • Tone M, Walsh LA, Waldmann H. Gene structure of human CD59 and demonstration that discrete mRNAs are generated by alternative polyadenylation. J Mol Biol. 1992 Oct 5;227(3):971–976. [PubMed]
  • Holguin MH, Martin CB, Eggett T, Parker CJ. Analysis of the gene that encodes the complement regulatory protein, membrane inhibitor of reactive lysis (CD59). Identification of an alternatively spliced exon and characterization of the transcriptional regulatory regions of the promoter. J Immunol. 1996 Aug 15;157(4):1659–1668. [PubMed]
  • Larsen F, Solheim J, Kristensen T, Kolstø AB, Prydz H. A tight cluster of five unrelated human genes on chromosome 16q22.1. Hum Mol Genet. 1993 Oct;2(10):1589–1595. [PubMed]
  • Kokoza VA, Raikhel AS. Ovarian- and somatic-specific transcripts of the mosquito clathrin heavy chain gene generated by alternative 5'-exon splicing and polyadenylation. J Biol Chem. 1997 Jan 10;272(2):1164–1170. [PubMed]
  • Freije JM, Díez-Itza I, Balbín M, Sánchez LM, Blasco R, Tolivia J, López-Otín C. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem. 1994 Jun 17;269(24):16766–16773. [PubMed]
  • Foulkes NS, Schlotter F, Pévet P, Sassone-Corsi P. Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature. 1993 Mar 18;362(6417):264–267. [PubMed]
  • Yarden A, Salomon D, Geiger B. Zebrafish cyclin D1 is differentially expressed during early embryogenesis. Biochim Biophys Acta. 1995 Dec 27;1264(3):257–260. [PubMed]
  • Xiong Y, Connolly T, Futcher B, Beach D. Human D-type cyclin. Cell. 1991 May 17;65(4):691–699. [PubMed]
  • Kiyokawa H, Busquets X, Powell CT, Ngo L, Rifkind RA, Marks PA. Cloning of a D-type cyclin from murine erythroleukemia cells. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2444–2447. [PMC free article] [PubMed]
  • Hla T. Molecular characterization of the 5.2 KB isoform of the human cyclooxygenase-1 transcript. Prostaglandins. 1996 Jan;51(1):81–85. [PubMed]
  • Ristimäki A, Narko K, Hla T. Down-regulation of cytokine-induced cyclo-oxygenase-2 transcript isoforms by dexamethasone: evidence for post-transcriptional regulation. Biochem J. 1996 Aug 15;318(Pt 1):325–331. [PMC free article] [PubMed]
  • Means GD, Mahendroo MS, Corbin CJ, Mathis JM, Powell FE, Mendelson CR, Simpson ER. Structural analysis of the gene encoding human aromatase cytochrome P-450, the enzyme responsible for estrogen biosynthesis. J Biol Chem. 1989 Nov 15;264(32):19385–19391. [PubMed]
  • Toda K, Terashima M, Mitsuuchi Y, Yamasaki Y, Yokoyama Y, Nojima S, Ushiro H, Maeda T, Yamamoto Y, Sagara Y, et al. Alternative usage of different poly(A) addition signals for two major species of mRNA encoding human aromatase P-450. FEBS Lett. 1989 Apr 24;247(2):371–376. [PubMed]
  • Terashima M, Toda K, Kawamoto T, Kuribayashi I, Ogawa Y, Maeda T, Shizuta Y. Isolation of a full-length cDNA encoding mouse aromatase P450. Arch Biochem Biophys. 1991 Mar;285(2):231–237. [PubMed]
  • Choi I, Simmen RC, Simmen FA. Molecular cloning of cytochrome P450 aromatase complementary deoxyribonucleic acid from periimplantation porcine and equine blastocysts identifies multiple novel 5'-untranslated exons expressed in embryos, endometrium, and placenta. Endocrinology. 1996 Apr;137(4):1457–1467. [PubMed]
  • Itoh S, Iemura O, Yamada E, Yoshimura T, Tsujikawa K, Kohama Y, Mimura T. Mouse cytochrome P-450 linked ferredoxin: its cDNA cloning and inducibility by dibutyryladenosine 3',5'-cyclic monophosphate and forskolin. Biochim Biophys Acta. 1995 Aug 22;1263(2):173–175. [PubMed]
  • Hook AG, Kellems RE. Localization and sequence analysis of poly(A) sites generating multiple dihydrofolate reductase mRNAs. J Biol Chem. 1988 Feb 15;263(5):2337–2343. [PubMed]
  • Bernard AM, Mattei MG, Pierres M, Marguet D. Structure of the mouse dipeptidyl peptidase IV (CD26) gene. Biochemistry. 1994 Dec 20;33(50):15204–15214. [PubMed]
  • Konopiński R, Nowak R, Siedlecki JA. Alternative polyadenylation of the gene transcripts encoding a rat DNA polymerase beta. Gene. 1996 Oct 17;176(1-2):191–195. [PubMed]
  • Jaramillo M, Pelletier J, Edery I, Nielsen PJ, Sonenberg N. Multiple mRNAs encode the murine translation initiation factor eIF-4E. J Biol Chem. 1991 Jun 5;266(16):10446–10451. [PubMed]
  • Si K, Das K, Maitra U. Characterization of multiple mRNAs that encode mammalian translation initiation factor 5 (eIF-5). J Biol Chem. 1996 Jul 12;271(28):16934–16938. [PubMed]
  • Troelstra C, Hesen W, Bootsma D, Hoeijmakers JH. Structure and expression of the excision repair gene ERCC6, involved in the human disorder Cockayne's syndrome group B. Nucleic Acids Res. 1993 Feb 11;21(3):419–426. [PMC free article] [PubMed]
  • Strathdee CA, Gavish H, Shannon WR, Buchwald M. Cloning of cDNAs for Fanconi's anaemia by functional complementation. Nature. 1992 Apr 30;356(6372):763–767. [PubMed]
  • Dhar MS, Joshi JG. Differential processing of the ferritin heavy chain mRNA in human liver and adult human brain. J Neurochem. 1993 Dec;61(6):2140–2146. [PubMed]
  • Smith R, Peters G, Dickson C. Multiple RNAs expressed from the int-2 gene in mouse embryonal carcinoma cell lines encode a protein with homology to fibroblast growth factors. EMBO J. 1988 Apr;7(4):1013–1022. [PMC free article] [PubMed]
  • Grinberg D, Thurlow J, Watson R, Smith R, Peters G, Dickson C. Transcriptional regulation of the int-2 gene in embryonal carcinoma cells. Cell Growth Differ. 1991 Mar;2(3):137–143. [PubMed]
  • Bost LM, Hjelmeland LM. Cell density regulates differential production of bFGF transcripts. Growth Factors. 1993;9(3):195–203. [PubMed]
  • Marynen P, Zhang J, Cassiman JJ, Van den Berghe H, David G. Partial primary structure of the 48- and 90-kilodalton core proteins of cell surface-associated heparan sulfate proteoglycans of lung fibroblasts. Prediction of an integral membrane domain and evidence for multiple distinct core proteins at the cell surface of human lung fibroblasts. J Biol Chem. 1989 Apr 25;264(12):7017–7024. [PubMed]
  • Verkerk AJ, de Graaff E, De Boulle K, Eichler EE, Konecki DS, Reyniers E, Manca A, Poustka A, Willems PJ, Nelson DL, et al. Alternative splicing in the fragile X gene FMR1. Hum Mol Genet. 1993 Apr;2(4):399–404. [PubMed]
  • Ray K, Ganguly R. The Drosophila G protein gamma subunit gene (D-G gamma 1) produces three developmentally regulated transcripts and is predominantly expressed in the central nervous system. J Biol Chem. 1992 Mar 25;267(9):6086–6092. [PubMed]
  • Azuma T, Liu WG, Vander Laan DJ, Bowcock AM, Taggart RT. Human gastric cathepsin E gene. Multiple transcripts result from alternative polyadenylation of the primary transcripts of a single gene locus at 1q31-q32. J Biol Chem. 1992 Jan 25;267(3):1609–1614. [PubMed]
  • Nagai T, Harigae H, Ishihara H, Motohashi H, Minegishi N, Tsuchiya S, Hayashi N, Gu L, Andres B, Engel JD, et al. Transcription factor GATA-2 is expressed in erythroid, early myeloid, and CD34+ human leukemia-derived cell lines. Blood. 1994 Aug 15;84(4):1074–1084. [PubMed]
  • Mallo M, Steingrímsson E, Copeland NG, Jenkins NA, Gridley T. Genomic organization, alternative polyadenylation, and chromosomal localization of Grg, a mouse gene related to the groucho transcript of the Drosophila Enhancer of split complex. Genomics. 1994 May 1;21(1):194–201. [PubMed]
  • Oldham ER, Bingham B, Baumbach WR. A functional polyadenylation signal is embedded in the coding region of chicken growth hormone receptor RNA. Mol Endocrinol. 1993 Nov;7(11):1379–1390. [PubMed]
  • Pierce A, Lyon M, Hampson IN, Cowling GJ, Gallagher JT. Molecular cloning of the major cell surface heparan sulfate proteoglycan from rat liver. J Biol Chem. 1992 Feb 25;267(6):3894–3900. [PubMed]
  • Ferrari S, Ronfani L, Calogero S, Bianchi ME. The mouse gene coding for high mobility group 1 protein (HMG1). J Biol Chem. 1994 Nov 18;269(46):28803–28808. [PubMed]
  • Brocard MP, Rousseau D, Lawrence JJ, Khochbin S. Two mRNA species encoding the differentiation-associated histone H1(0) are produced by alternative polyadenylation in mouse. Eur J Biochem. 1994 Apr 1;221(1):421–425. [PubMed]
  • Lin B, Rommens JM, Graham RK, Kalchman M, MacDonald H, Nasir J, Delaney A, Goldberg YP, Hayden MR. Differential 3' polyadenylation of the Huntington disease gene results in two mRNA species with variable tissue expression. Hum Mol Genet. 1993 Oct;2(10):1541–1545. [PubMed]
  • Joos TO, Whittaker CA, Meng F, DeSimone DW, Gnau V, Hausen P. Integrin alpha 5 during early development of Xenopus laevis. Mech Dev. 1995 Apr;50(2-3):187–199. [PubMed]
  • Ahuja SK, Shetty A, Tiffany HL, Murphy PM. Comparison of the genomic organization and promoter function for human interleukin-8 receptors A and B. J Biol Chem. 1994 Oct 21;269(42):26381–26389. [PubMed]
  • Guo B, Brown FM, Phillips JD, Yu Y, Leibold EA. Characterization and expression of iron regulatory protein 2 (IRP2). Presence of multiple IRP2 transcripts regulated by intracellular iron levels. J Biol Chem. 1995 Jul 14;270(28):16529–16535. [PubMed]
  • Bonthron DT, Brady N, Donaldson IA, Steinmann B. Molecular basis of essential fructosuria: molecular cloning and mutational analysis of human ketohexokinase (fructokinase). Hum Mol Genet. 1994 Sep;3(9):1627–1631. [PubMed]
  • Furukawa K, Hotta Y. cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J. 1993 Jan;12(1):97–106. [PMC free article] [PubMed]
  • Ranganathan G, Ong JM, Yukht A, Saghizadeh M, Simsolo RB, Pauer A, Kern PA. Tissue-specific expression of human lipoprotein lipase. Effect of the 3'-untranslated region on translation. J Biol Chem. 1995 Mar 31;270(13):7149–7155. [PubMed]
  • Hinsdale ME, Farmer SC, Johnson KR, Davisson MT, Hamm DA, Tolwani RJ, Wood PA. RNA expression and chromosomal location of the mouse long-chain acyl-CoA dehydrogenase gene. Genomics. 1995 Jul 20;28(2):163–170. [PubMed]
  • Hurt J, Hsu JL, Dougall WC, Visner GA, Burr IM, Nick HS. Multiple mRNA species generated by alternate polyadenylation from the rat manganese superoxide dismutase gene. Nucleic Acids Res. 1992 Jun 25;20(12):2985–2990. [PMC free article] [PubMed]
  • Code RJ, Olmsted JB. Mouse microtubule-associated protein 4 (MAP4) transcript diversity generated by alternative polyadenylation. Gene. 1992 Dec 15;122(2):367–370. [PubMed]
  • Ayté J, Gil-Gómez G, Hegardt FG. Structural characterization of the 3' noncoding region of the gene encoding rat mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase. Gene. 1993 Jan 30;123(2):267–270. [PubMed]
  • Haviland DL, Borel AC, Fleischer DT, Haviland JC, Wetsel RA. Structure, 5'-flanking sequence, and chromosome location of the human N-formyl peptide receptor gene. A single-copy gene comprised of two exons on chromosome 19q.13.3 that yields two distinct transcripts by alternative polyadenylation. Biochemistry. 1993 Apr 27;32(16):4168–4174. [PubMed]
  • Pan SS, Forrest GL, Akman SA, Hu LT. NAD(P)H:quinone oxidoreductase expression and mitomycin C resistance developed by human colon cancer HCT 116 cells. Cancer Res. 1995 Jan 15;55(2):330–335. [PubMed]
  • Saez CG, Myers JC, Shows TB, Leinwand LA. Human nonmuscle myosin heavy chain mRNA: generation of diversity through alternative polyadenylylation. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1164–1168. [PMC free article] [PubMed]
  • Vihinen T, Auvinen P, Alanen-Kurki L, Jalkanen M. Structural organization and genomic sequence of mouse syndecan-1 gene. J Biol Chem. 1993 Aug 15;268(23):17261–17269. [PubMed]
  • Veldman GM, Bean KM, Cumming DA, Eddy RL, Sait SN, Shows TB. Genomic organization and chromosomal localization of the gene encoding human P-selectin glycoprotein ligand. J Biol Chem. 1995 Jul 7;270(27):16470–16475. [PubMed]
  • Vinós J, Maroto M, Garesse R, Marco R, Cervera M. Drosophila melanogaster paramyosin: developmental pattern, mapping and properties deduced from its complete coding sequence. Mol Gen Genet. 1992 Feb;231(3):385–394. [PubMed]
  • Currie PD, Sullivan DT. Structure and expression of the gene encoding phosphofructokinase (PFK) in Drosophila melanogaster. J Biol Chem. 1994 Oct 7;269(40):24679–24687. [PubMed]
  • Dirks RP, Bloemers HP. Signals controlling the expression of PDGF. Mol Biol Rep. 1995;22(1):1–24. [PubMed]
  • Rorsman F, Leveen P, Betsholtz C. Platelet-derived growth factor (PDGF) A-chain mRNA heterogeneity generated by the use of alternative promoters and alternative polyadenylation sites. Growth Factors. 1992;7(3):241–251. [PubMed]
  • Sureau A, Perbal B. Several mRNAs with variable 3' untranslated regions and different stability encode the human PR264/SC35 splicing factor. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):932–936. [PMC free article] [PubMed]
  • Tachibana K, Umezawa A, Takano T. Detection and characterization of mRNA and proteins encoded by human rab2 low molecular weight GTP-binding protein gene. Biochem Int. 1992 Oct;28(1):181–189. [PubMed]
  • Krebber H, Ponstingl H. Ubiquitous expression and testis-specific alternative polyadenylation of mRNA for the human Ran GTPase activator RanGAP1. Gene. 1996 Nov 21;180(1-2):7–11. [PubMed]
  • Hansen WR, Barsic-Tress N, Taylor L, Curthoys NP. The 3'-nontranslated region of rat renal glutaminase mRNA contains a pH-responsive stability element. Am J Physiol. 1996 Jul;271(1 Pt 2):F126–F131. [PubMed]
  • Moscow JA, He R, Gudas JM, Cowan KH. Utilization of multiple polyadenylation signals in the human RHOA protooncogene. Gene. 1994 Jul 8;144(2):229–236. [PubMed]
  • Fujita T, Shirasawa T, Uchida K, Maruyama N. Isolation of cDNA clone encoding rat senescence marker protein-30 (SMP30) and its tissue distribution. Biochim Biophys Acta. 1992 Oct 20;1132(3):297–305. [PubMed]
  • von Lindern M, van Baal S, Wiegant J, Raap A, Hagemeijer A, Grosveld G. Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3' half to different genes: characterization of the set gene. Mol Cell Biol. 1992 Aug;12(8):3346–3355. [PMC free article] [PubMed]
  • Sugiura N, Hagiwara H, Hirose S. Molecular cloning of porcine soluble angiotensin-binding protein. J Biol Chem. 1992 Sep 5;267(25):18067–18072. [PubMed]
  • Popielarz M, Cavaloc Y, Mattei MG, Gattoni R, Stévenin J. The gene encoding human splicing factor 9G8. Structure, chromosomal localization, and expression of alternatively processed transcripts. J Biol Chem. 1995 Jul 28;270(30):17830–17835. [PubMed]
  • Bedell MA, Copeland NG, Jenkins NA. Multiple pathways for Steel regulation suggested by genomic and sequence analysis of the murine Steel gene. Genetics. 1996 Mar;142(3):927–934. [PMC free article] [PubMed]
  • Williams CJ, O'Hare K. Elimination of introns at the Drosophila suppressor-of-forked locus by P-element-mediated gene conversion shows that an RNA lacking a stop codon is dispensable. Genetics. 1996 May;143(1):345–351. [PMC free article] [PubMed]
  • Vihinen T, Auvinen P, Alanen-Kurki L, Jalkanen M. Structural organization and genomic sequence of mouse syndecan-1 gene. J Biol Chem. 1993 Aug 15;268(23):17261–17269. [PubMed]
  • Hammani K, Blakis A, Morsette D, Bowcock AM, Schmutte C, Henriet P, DeClerck YA. Structure and characterization of the human tissue inhibitor of metalloproteinases-2 gene. J Biol Chem. 1996 Oct 11;271(41):25498–25505. [PubMed]
  • Sun Y, Hegamyer G, Kim H, Sithanandam K, Li H, Watts R, Colburn NH. Molecular cloning of mouse tissue inhibitor of metalloproteinases-3 and its promoter. Specific lack of expression in neoplastic JB6 cells may reflect altered gene methylation. J Biol Chem. 1995 Aug 18;270(33):19312–19319. [PubMed]
  • Qian JF, Lazar-Wesley E, Breugnot C, May E. Human transforming growth factor alpha: sequence analysis of the 4.5-kb and 1.6-kb mRNA species. Gene. 1993 Oct 15;132(2):291–296. [PubMed]
  • Russell DL, Kim KH. Expression of triosephosphate isomerase transcripts in rat testis: evidence for retinol regulation and a novel germ cell transcript. Biol Reprod. 1996 Jul;55(1):11–18. [PubMed]
  • Pajot B, Sarger C, Bonnet J, Garret M. An alternative splicing modifies the C-terminal end of tryptophanyl-tRNA synthetase in murine embryonic stem cells. J Mol Biol. 1994 Sep 30;242(4):599–603. [PubMed]
  • Shen T, Anderson SL, Rubin BY. Use of alternative polyadenylation sites in the synthesis of mRNAs encoding the interferon-induced tryptophanyl tRNA synthetase. Gene. 1996 Nov 14;179(2):225–229. [PubMed]
  • Matthews KR, Tschudi C, Ullu E. A common pyrimidine-rich motif governs trans-splicing and polyadenylation of tubulin polycistronic pre-mRNA in trypanosomes. Genes Dev. 1994 Feb 15;8(4):491–501. [PubMed]
  • Levy AP, Levy NS, Wegner S, Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 1995 Jun 2;270(22):13333–13340. [PubMed]
  • Danielson KG, Pillarisetti J, Cohen IR, Sholehvar B, Huebner K, Ng LJ, Nicholls JM, Cheah KS, Iozzo RV. Characterization of the complete genomic structure of the human WNT-5A gene, functional analysis of its promoter, chromosomal mapping, and expression in early human embryogenesis. J Biol Chem. 1995 Dec 29;270(52):31225–31234. [PubMed]
  • Miyazaki T, Kanou Y, Murata Y, Ohmori S, Niwa T, Maeda K, Yamamura H, Seo H. Molecular cloning of a novel thyroid hormone-responsive gene, ZAKI-4, in human skin fibroblasts. J Biol Chem. 1996 Jun 14;271(24):14567–14571. [PubMed]
  • Benech P, Merlin G, Revel M, Chebath J. 3' end structure of the human (2'-5') oligo A synthetase gene: prediction of two distinct proteins with cell type-specific expression. Nucleic Acids Res. 1985 Feb 25;13(4):1267–1281. [PMC free article] [PubMed]
  • Saunders ME, Gewert DR, Tugwell ME, McMahon M, Williams BR. Human 2-5A synthetase: characterization of a novel cDNA and corresponding gene structure. EMBO J. 1985 Jul;4(7):1761–1768. [PMC free article] [PubMed]
  • Winkelmann JC, Costa FF, Linzie BL, Forget BG. Beta spectrin in human skeletal muscle. Tissue-specific differential processing of 3' beta spectrin pre-mRNA generates a beta spectrin isoform with a unique carboxyl terminus. J Biol Chem. 1990 Nov 25;265(33):20449–20454. [PubMed]
  • Chu ZL, Wickrema A, Krantz SB, Winkelmann JC. Erythroid-specific processing of human beta spectrin I pre-mRNA. Blood. 1994 Sep 15;84(6):1992–1999. [PubMed]
  • Hourcade D, Miesner DR, Atkinson JP, Holers VM. Identification of an alternative polyadenylation site in the human C3b/C4b receptor (complement receptor type 1) transcriptional unit and prediction of a secreted form of complement receptor type 1. J Exp Med. 1988 Oct 1;168(4):1255–1270. [PMC free article] [PubMed]
  • Connor RJ, Pasquale EB. Genomic organization and alternatively processed forms of Cek5, a receptor protein-tyrosine kinase of the Eph subfamily. Oncogene. 1995 Dec 7;11(11):2429–2438. [PubMed]
  • Callaghan T, Antczak M, Flickinger T, Raines M, Myers M, Kung HJ. A complete description of the EGF-receptor exon structure: implication in oncogenic activation and domain evolution. Oncogene. 1993 Nov;8(11):2939–2948. [PubMed]
  • Reiter JL, Maihle NJ. A 1.8 kb alternative transcript from the human epidermal growth factor receptor gene encodes a truncated form of the receptor. Nucleic Acids Res. 1996 Oct 15;24(20):4050–4056. [PMC free article] [PubMed]
  • Hazelrigg T, Tu C. Sex-specific processing of the Drosophila exuperantia transcript is regulated in male germ cells by the tra-2 gene. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10752–10756. [PMC free article] [PubMed]
  • Crowley TE, Hazelrigg T. A male-specific 3'-UTR regulates the steady-state level of the exuperantia mRNA during spermatogenesis in Drosophila. Mol Gen Genet. 1995 Aug 21;248(3):370–374. [PubMed]
  • Haidaris PJ, Courtney MA. Liver-specific RNA processing of the ubiquitously transcribed rat fibrinogen gamma-chain gene. Blood. 1992 Mar 1;79(5):1218–1224. [PubMed]
  • Johnson DE, Lu J, Chen H, Werner S, Williams LT. The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Mol Cell Biol. 1991 Sep;11(9):4627–4634. [PMC free article] [PubMed]
  • Givol D, Yayon A. Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB J. 1992 Dec;6(15):3362–3369. [PubMed]
  • Kan JL, Jannatipour M, Taylor SM, Moran RG. Mouse cDNAs encoding a trifunctional protein of de novo purine synthesis and a related single-domain glycinamide ribonucleotide synthetase. Gene. 1993 Dec 31;137(2):195–202. [PubMed]
  • Oakley RH, Sar M, Cidlowski JA. The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. J Biol Chem. 1996 Apr 19;271(16):9550–9559. [PubMed]
  • Scott GK, Robles R, Park JW, Montgomery PA, Daniel J, Holmes WE, Lee J, Keller GA, Li WL, Fendly BM, et al. A truncated intracellular HER2/neu receptor produced by alternative RNA processing affects growth of human carcinoma cells. Mol Cell Biol. 1993 Apr;13(4):2247–2257. [PMC free article] [PubMed]
  • Bach I, Yaniv M. More potent transcriptional activators or a transdominant inhibitor of the HNF1 homeoprotein family are generated by alternative RNA processing. EMBO J. 1993 Nov;12(11):4229–4242. [PMC free article] [PubMed]
  • Cushley W, Coupar BE, Mickelson CA, Williamson AR. A common mechanism for the synthesis of membrane and secreted immunoglobulin alpha, gamma and mu chains. Nature. 1982 Jul 1;298(5869):77–79. [PubMed]
  • Zhang K, Saxon A, Max EE. Two unusual forms of human immunoglobulin E encoded by alternative RNA splicing of epsilon heavy chain membrane exons. J Exp Med. 1992 Jul 1;176(1):233–243. [PMC free article] [PubMed]
  • Peterson ML. Balanced efficiencies of splicing and cleavage-polyadenylation are required for mu-s and mu-m mRNA regulation. Gene Expr. 1992;2(4):319–327. [PubMed]
  • Owczarek CM, Layton MJ, Robb LG, Nicola NA, Begley CG. Molecular basis of the soluble and membrane-bound forms of the murine leukemia inhibitory factor receptor alpha-chain. Expression in normal, gestating, and leukemia inhibitory factor nullizygous mice. J Biol Chem. 1996 Mar 8;271(10):5495–5504. [PubMed]
  • Liu Y, Bernard HU, Apt D. NFI-B3, a novel transcriptional repressor of the nuclear factor I family, is generated by alternative RNA processing. J Biol Chem. 1997 Apr 18;272(16):10739–10745. [PubMed]
  • Burk SE, Shull GE. Structure of the rat plasma membrane Ca(2+)-ATPase isoform 3 gene and characterization of alternative splicing and transcription products. Skeletal muscle-specific splicing results in a plasma membrane Ca(2+)-ATPase with a novel calmodulin-binding domain. J Biol Chem. 1992 Sep 25;267(27):19683–19690. [PubMed]
  • Zhao W, Manley JL. Complex alternative RNA processing generates an unexpected diversity of poly(A) polymerase isoforms. Mol Cell Biol. 1996 May;16(5):2378–2386. [PMC free article] [PubMed]
  • Ancian P, Lambeau G, Mattéi MG, Lazdunski M. The human 180-kDa receptor for secretory phospholipases A2. Molecular cloning, identification of a secreted soluble form, expression, and chromosomal localization. J Biol Chem. 1995 Apr 14;270(15):8963–8970. [PubMed]
  • Ruiz-Opazo N, Nadal-Ginard B. Alpha-tropomyosin gene organization. Alternative splicing of duplicated isotype-specific exons accounts for the production of smooth and striated muscle isoforms. J Biol Chem. 1987 Apr 5;262(10):4755–4765. [PubMed]
  • Lees-Miller JP, Goodwin LO, Helfman DM. Three novel brain tropomyosin isoforms are expressed from the rat alpha-tropomyosin gene through the use of alternative promoters and alternative RNA processing. Mol Cell Biol. 1990 Apr;10(4):1729–1742. [PMC free article] [PubMed]
  • Wang YC, Rubenstein PA. Choice of 3' cleavage/polyadenylation site in beta-tropomyosin RNA processing is differentiation-dependent in mouse BC3H1 muscle cells. J Biol Chem. 1992 Feb 5;267(4):2728–2736. [PubMed]
  • Wang YC, Rubenstein PA. Splicing of two alternative exon pairs in beta-tropomyosin pre-mRNA is independently controlled during myogenesis. J Biol Chem. 1992 Jun 15;267(17):12004–12010. [PubMed]
  • Burtis KC, Baker BS. Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell. 1989 Mar 24;56(6):997–1010. [PubMed]
  • Petch LA, Harris J, Raymond VW, Blasband A, Lee DC, Earp HS. A truncated, secreted form of the epidermal growth factor receptor is encoded by an alternatively spliced transcript in normal rat tissue. Mol Cell Biol. 1990 Jun;10(6):2973–2982. [PMC free article] [PubMed]
  • Pajusola K, Aprelikova O, Armstrong E, Morris S, Alitalo K. Two human FLT4 receptor tyrosine kinase isoforms with distinct carboxy terminal tails are produced by alternative processing of primary transcripts. Oncogene. 1993 Nov;8(11):2931–2937. [PubMed]
  • Barbas JA, Chaix JC, Steinmetz M, Goridis C. Differential splicing and alternative polyadenylation generates distinct NCAM transcripts and proteins in the mouse. EMBO J. 1988 Mar;7(3):625–632. [PMC free article] [PubMed]
  • Cameron HS, Szczepaniak D, Weston BW. Expression of human chromosome 19p alpha(1,3)-fucosyltransferase genes in normal tissues. Alternative splicing, polyadenylation, and isoforms. J Biol Chem. 1995 Aug 25;270(34):20112–20122. [PubMed]
  • Shimamoto A, Kitao S, Ichikawa K, Suzuki N, Yamabe Y, Imamura O, Tokutake Y, Satoh M, Matsumoto T, Kuromitsu J, et al. A unique human gene that spans over 230 kb in the human chromosome 8p11-12 and codes multiple family proteins sharing RNA-binding motifs. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10913–10917. [PMC free article] [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...