• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. Jun 1, 1997; 25(11): 2114–2120.
PMCID: PMC146720

Specific binding of sso II DNA methyltransferase to its promoter region provides the regulation of sso II restriction-modification gene expression.


The regulation of the Sso II restriction-modification system from Shigella sonnei was studied in vivo and in vitro . In lacZ fusion experiments, Sso II methyltransferase (M. Sso II) was found to repress its own synthesis but stimulate expression of the cognate restriction endonuclease (ENase). The N-terminal 72 amino acids of M. Sso II, predicted to form a helix-turn-helix (HTH) motif, was found to be responsible for the specific DNA-binding and regulatory function of M. Sso II. Similar HTH motifs are predicted in the N-terminus of a number of 5-methylcytosine methyltransferases, particularly M. Eco RII, M.dcm and M. Msp I, of which the ability to regulate autogenously has been proposed. In vitro, the binding of M. Sso II to its target DNA was investigated using a mobility shift assay. M. Sso II forms a specific and stable complex with a 140 bp DNA fragment containing the promoter region of Sso II R-M system. The dissociation constant (Kd) was determined to be 1.5x10(-8) M. DNaseI footprinting experiments demonstrated that M. Sso II protects a 48-52 bp region immediately upstream of the M. Sso II coding sequence which includes the predicted -10 promoter sequence of M. Sso II and the -10 and -35 sequences of R. Sso II.

Full Text

The Full Text of this article is available as a PDF (209K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bannister D, Glover SW. Restriction and modification of bacteriophages by R+ strains of Escherichia coli K12. Biochem Biophys Res Commun. 1968 Mar 27;30(6):735–738. [PubMed]
  • Yoshimori R, Roulland-Dussoix D, Boyer HW. R factor-controlled restriction and modification of deoxyribonucleic acid: restriction mutants. J Bacteriol. 1972 Dec;112(3):1275–1279. [PMC free article] [PubMed]
  • Karyagina AS, Lunin VG, Nikolskaya II. Characterization of the genetic determinants of SsoII-restriction endonuclease and modification methyltransferase. Gene. 1990 Mar 1;87(1):113–118. [PubMed]
  • Tao T, Blumenthal RM. Sequence and characterization of pvuIIR, the PvuII endonuclease gene, and of pvuIIC, its regulatory gene. J Bacteriol. 1992 May;174(10):3395–3398. [PMC free article] [PubMed]
  • Ives CL, Nathan PD, Brooks JE. Regulation of the BamHI restriction-modification system by a small intergenic open reading frame, bamHIC, in both Escherichia coli and Bacillus subtilis. J Bacteriol. 1992 Nov;174(22):7194–7201. [PMC free article] [PubMed]
  • Som S, Friedman S. Regulation of EcoRII methyltransferase: effect of mutations on gene expression and in vitro binding to the promoter region. Nucleic Acids Res. 1994 Dec 11;22(24):5347–5353. [PMC free article] [PubMed]
  • Som S, Friedman S. Autogenous regulation of the EcoRII methylase gene at the transcriptional level: effect of 5-azacytidine. EMBO J. 1993 Nov;12(11):4297–4303. [PMC free article] [PubMed]
  • Karyagina AS, Lunin VG, Degtyarenko KN, Uvarov VY, Nikolskaya II. Analysis of the nucleotide and derived amino acid sequences of the SsoII restriction endonuclease and methyltransferase. Gene. 1993 Feb 14;124(1):13–19. [PubMed]
  • Chang AC, Cohen SN. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. [PMC free article] [PubMed]
  • Zabeau M, Stanley KK. Enhanced expression of cro-beta-galactosidase fusion proteins under the control of the PR promoter of bacteriophage lambda. EMBO J. 1982;1(10):1217–1224. [PMC free article] [PubMed]
  • Karyagina AS, Lunin VG, Levtchenko IYa, Labbé D, Brousseau R, Lau PC, Nikolskaya II. The SsoII and NlaX DNA methyltransferases: overproduction and functional analysis. Gene. 1995 May 19;157(1-2):93–96. [PubMed]
  • Itohara S, Sekikawa K. Molecular cloning of infectious proviral genomes of bovine leukemia virus. Virology. 1987 Jul;159(1):158–160. [PubMed]
  • Drutsa VL, Kaberdin VR, Koroleva ON, Shilov IA. Effektivnyi metod napravlennogo vvedeniia mutatsii v plazmidy i klonirovaniia odnotiazhevykh fragmentov DNA. Bioorg Khim. 1991 Nov;17(11):1487–1493. [PubMed]
  • Taylor JD, Badcoe IG, Clarke AR, Halford SE. EcoRV restriction endonuclease binds all DNA sequences with equal affinity. Biochemistry. 1991 Sep 10;30(36):8743–8753. [PubMed]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Pósfai J, Bhagwat AS, Pósfai G, Roberts RJ. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 1989 Apr 11;17(7):2421–2435. [PMC free article] [PubMed]
  • Dodd IB, Egan JB. Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res. 1990 Sep 11;18(17):5019–5026. [PMC free article] [PubMed]
  • Karreman C, de Waard A. Cloning and complete nucleotide sequences of the type II restriction-modification genes of Salmonella infantis. J Bacteriol. 1988 Jun;170(6):2527–2532. [PMC free article] [PubMed]
  • Szilák L, Venetianer P, Kiss A. Cloning and nucleotide sequence of the genes coding for the Sau96I restriction and modification enzymes. Nucleic Acids Res. 1990 Aug 25;18(16):4659–4664. [PMC free article] [PubMed]
  • Stankevicius K, Povilionis P, Lubys A, Menkevicius S, Janulaitis A. Cloning and characterization of the unusual restriction-modification system comprising two restriction endonucleases and one methyltransferase. Gene. 1995 May 19;157(1-2):49–53. [PubMed]
  • Lin PM, Lee CH, Roberts RJ. Cloning and characterization of the genes encoding the MspI restriction modification system. Nucleic Acids Res. 1989 Apr 25;17(8):3001–3011. [PMC free article] [PubMed]
  • Fitzgerlad GF, Daly C, Brown LR, Gingeras TR. ScrFI: a new sequence-specific endonuclease from Streptococcus cremoris. Nucleic Acids Res. 1982 Dec 20;10(24):8171–8179. [PMC free article] [PubMed]
  • Hanck T, Gerwin N, Fritz HJ. Nucleotide sequence of the dcm locus of Escherichia coli K12. Nucleic Acids Res. 1989 Jul 25;17(14):5844–5844. [PMC free article] [PubMed]
  • Som S, Bhagwat AS, Friedman S. Nucleotide sequence and expression of the gene encoding the EcoRII modification enzyme. Nucleic Acids Res. 1987 Jan 12;15(1):313–332. [PMC free article] [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...