• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. May 15, 1997; 25(10): 2005–2011.
PMCID: PMC146683

Analyses of frameshifting at UUU-pyrimidine sites.


Others have recently shown that the UUU phenylalanine codon is highly frameshift-prone in the 3'(rightward) direction at pyrimidine 3'contexts. Here, several approaches are used to analyze frameshifting at such sites. The four permutations of the UUU/C (phenylalanine) and CGG/U (arginine) codon pairs were examined because they vary greatly in their expected frameshifting tendencies. Furthermore, these synonymous sites allow direct tests of the idea that codon usage can control frameshifting. Frameshifting was measured for these dicodons embedded within each of two broader contexts: the Escherichia coli prfB (RF2 gene) programmed frameshift site and a 'normal' message site. The principal difference between these contexts is that the programmed frameshift contains a purine-rich sequence upstream of the slippery site that can base pair with the 3'end of 16 S rRNA (the anti-Shine-Dalgarno) to enhance frameshifting. In both contexts frameshift frequencies are highest if the slippery tRNAPhe is capable of stable base pairing in the shifted reading frame. This requirement is less stringent in the RF2 context, as if the Shine-Dalgarno interaction can help stabilize a quasi-stable rephased tRNA:message complex. It was previously shown that frameshifting in RF2 occurs more frequently if the codon 3'to the slippery site is read by a rare tRNA. Consistent with that earlier work, in the RF2 context frameshifting occurs substantially more frequently if the arginine codon is CGG, which is read by a rare tRNA. In contrast, in the 'normal' context frameshifting is only slightly greater at CGG than at CGU. It is suggested that the Shine-Dalgarno-like interaction elevates frameshifting specifically during the pause prior to translation of the second codon, which makes frameshifting exquisitely sensitive to the rate of translation of that codon. In both contexts frameshifting increases in a mutant strain that fails to modify tRNA base A37, which is 3'of the anticodon. Thus, those base modifications may limit frameshifting at UUU codons. Finally, statistical analyses show that UUU Ynn dicodons are extremely rare in E.coli genes that have highly biased codon usage.

Full Text

The Full Text of this article is available as a PDF (80K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Farabaugh PJ. Programmed translational frameshifting. Microbiol Rev. 1996 Mar;60(1):103–134. [PMC free article] [PubMed]
  • Gesteland RF, Atkins JF. Recoding: dynamic reprogramming of translation. Annu Rev Biochem. 1996;65:741–768. [PubMed]
  • Jacks T, Madhani HD, Masiarz FR, Varmus HE. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988 Nov 4;55(3):447–458. [PubMed]
  • Weiss RB, Dunn DM, Atkins JF, Gesteland RF. Slippery runs, shifty stops, backward steps, and forward hops: -2, -1, +1, +2, +5, and +6 ribosomal frameshifting. Cold Spring Harb Symp Quant Biol. 1987;52:687–693. [PubMed]
  • Brierley I, Jenner AJ, Inglis SC. Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal. J Mol Biol. 1992 Sep 20;227(2):463–479. [PubMed]
  • Craigen WJ, Caskey CT. Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature. 1986 Jul 17;322(6076):273–275. [PubMed]
  • Curran JF, Yarus M. Use of tRNA suppressors to probe regulation of Escherichia coli release factor 2. J Mol Biol. 1988 Sep 5;203(1):75–83. [PubMed]
  • Belcourt MF, Farabaugh PJ. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell. 1990 Jul 27;62(2):339–352. [PubMed]
  • Curran JF, Yarus M. Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. J Mol Biol. 1989 Sep 5;209(1):65–77. [PubMed]
  • Tu C, Tzeng TH, Bruenn JA. Ribosomal movement impeded at a pseudoknot required for frameshifting. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8636–8640. [PMC free article] [PubMed]
  • Tsuchihashi Z. Translational frameshifting in the Escherichia coli dnaX gene in vitro. Nucleic Acids Res. 1991 May 11;19(9):2457–2462. [PMC free article] [PubMed]
  • Sipley J, Goldman E. Increased ribosomal accuracy increases a programmed translational frameshift in Escherichia coli. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2315–2319. [PMC free article] [PubMed]
  • Craigen WJ, Cook RG, Tate WP, Caskey CT. Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3616–3620. [PMC free article] [PubMed]
  • Scolnick E, Tompkins R, Caskey T, Nirenberg M. Release factors differing in specificity for terminator codons. Proc Natl Acad Sci U S A. 1968 Oct;61(2):768–774. [PMC free article] [PubMed]
  • Adamski FM, Donly BC, Tate WP. Competition between frameshifting, termination and suppression at the frameshift site in the Escherichia coli release factor-2 mRNA. Nucleic Acids Res. 1993 Nov 11;21(22):5074–5078. [PMC free article] [PubMed]
  • Poole ES, Brown CM, Tate WP. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J. 1995 Jan 3;14(1):151–158. [PMC free article] [PubMed]
  • Shine J, Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. [PMC free article] [PubMed]
  • Weiss RB, Dunn DM, Dahlberg AE, Atkins JF, Gesteland RF. Reading frame switch caused by base-pair formation between the 3' end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J. 1988 May;7(5):1503–1507. [PMC free article] [PubMed]
  • Larsen B, Wills NM, Gesteland RF, Atkins JF. rRNA-mRNA base pairing stimulates a programmed -1 ribosomal frameshift. J Bacteriol. 1994 Nov;176(22):6842–6851. [PMC free article] [PubMed]
  • Larsen B, Peden J, Matsufuji S, Matsufuji T, Brady K, Maldonado R, Wills NM, Fayet O, Atkins JF, Gesteland RF. Upstream stimulators for recoding. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1123–1129. [PubMed]
  • Curran JF. Analysis of effects of tRNA:message stability on frameshift frequency at the Escherichia coli RF2 programmed frameshift site. Nucleic Acids Res. 1993 Apr 25;21(8):1837–1843. [PMC free article] [PubMed]
  • Tsuchihashi Z, Brown PO. Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between tRNA(Lys) and an AAG lysine codon. Genes Dev. 1992 Mar;6(3):511–519. [PubMed]
  • Weiss RB, Dunn DM, Shuh M, Atkins JF, Gesteland RF. E. coli ribosomes re-phase on retroviral frameshift signals at rates ranging from 2 to 50 percent. New Biol. 1989 Nov;1(2):159–169. [PubMed]
  • Fu C, Parker J. A ribosomal frameshifting error during translation of the argI mRNA of Escherichia coli. Mol Gen Genet. 1994 May 25;243(4):434–441. [PubMed]
  • Björk GR. Genetic dissection of synthesis and function of modified nucleosides in bacterial transfer RNA. Prog Nucleic Acid Res Mol Biol. 1995;50:263–338. [PubMed]
  • Andersson SG, Kurland CG. Codon preferences in free-living microorganisms. Microbiol Rev. 1990 Jun;54(2):198–210. [PMC free article] [PubMed]
  • Buckingham RH. Codon context and protein synthesis: enhancements of the genetic code. Biochimie. 1994;76(5):351–354. [PubMed]
  • Curran JF, Yarus M. Base substitutions in the tRNA anticodon arm do not degrade the accuracy of reading frame maintenance. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6538–6542. [PMC free article] [PubMed]
  • Miller JH, Albertini AM. Effects of surrounding sequence on the suppression of nonsense codons. J Mol Biol. 1983 Feb 15;164(1):59–71. [PubMed]
  • Ericson JU, Björk GR. Pleiotropic effects induced by modification deficiency next to the anticodon of tRNA from Salmonella typhimurium LT2. J Bacteriol. 1986 Jun;166(3):1013–1021. [PMC free article] [PubMed]
  • VOGEL HJ, BONNER DM. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed]
  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW, Crosa JH, Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed]
  • Brown CM, Dalphin ME, Stockwell PA, Tate WP. The translational termination signal database. Nucleic Acids Res. 1993 Jul 1;21(13):3119–3123. [PMC free article] [PubMed]
  • Folley LS, Yarus M. Codon contexts from weakly expressed genes reduce expression in vivo. J Mol Biol. 1989 Oct 5;209(3):359–378. [PubMed]
  • Atkins JF, Elseviers D, Gorini L. Low activity of -galactosidase in frameshift mutants of Escherichia coli. Proc Natl Acad Sci U S A. 1972 May;69(5):1192–1195. [PMC free article] [PubMed]
  • Barak Z, Gallant J, Lindsley D, Kwieciszewki B, Heidel D. Enhanced ribosome frameshifting in stationary phase cells. J Mol Biol. 1996 Oct 25;263(2):140–148. [PubMed]
  • Connolly DM, Winkler ME. Genetic and physiological relationships among the miaA gene, 2-methylthio-N6-(delta 2-isopentenyl)-adenosine tRNA modification, and spontaneous mutagenesis in Escherichia coli K-12. J Bacteriol. 1989 Jun;171(6):3233–3246. [PMC free article] [PubMed]
  • Gorini L. Ribosomal discrimination of tRNAs. Nat New Biol. 1971 Dec 29;234(52):261–264. [PubMed]
  • Bohman K, Ruusala T, Jelenc PC, Kurland CG. Kinetic impairment of restrictive streptomycin-resistant ribosomes. Mol Gen Genet. 1984;198(1):90–99. [PubMed]
  • Thompson RC, Dix DB, Gerson RB, Karim AM. Effect of Mg2+ concentration, polyamines, streptomycin, and mutations in ribosomal proteins on the accuracy of the two-step selection of aminoacyl-tRNAs in protein biosynthesis. J Biol Chem. 1981 Jul 10;256(13):6676–6681. [PubMed]
  • Bilgin N, Claesens F, Pahverk H, Ehrenberg M. Kinetic properties of Escherichia coli ribosomes with altered forms of S12. J Mol Biol. 1992 Apr 20;224(4):1011–1027. [PubMed]
  • Curran JF. Decoding with the A:I wobble pair is inefficient. Nucleic Acids Res. 1995 Feb 25;23(4):683–688. [PMC free article] [PubMed]
  • Gallant JA, Lindsley D. Leftward ribosome frameshifting at a hungry codon. J Mol Biol. 1992 Jan 5;223(1):31–40. [PubMed]
  • Björk GR, Wikström PM, Byström AS. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. Science. 1989 May 26;244(4907):986–989. [PubMed]
  • Hagervall TG, Tuohy TM, Atkins JF, Björk GR. Deficiency of 1-methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet translocation. J Mol Biol. 1993 Aug 5;232(3):756–765. [PubMed]
  • Lim VI. Analysis of interactions between the codon-anticodon duplexes within the ribosome: their role in translation. J Mol Biol. 1997 Mar 14;266(5):877–890. [PubMed]
  • Grosjean HJ, de Henau S, Crothers DM. On the physical basis for ambiguity in genetic coding interactions. Proc Natl Acad Sci U S A. 1978 Feb;75(2):610–614. [PMC free article] [PubMed]
  • Vacher J, Grosjean H, Houssier C, Buckingham RH. The effect of point mutations affecting Escherichia coli tryptophan tRNA on anticodon-anticodon interactions and on UGA suppression. J Mol Biol. 1984 Aug 5;177(2):329–342. [PubMed]
  • Petrullo LA, Gallagher PJ, Elseviers D. The role of 2-methylthio-N6-isopentenyladenosine in readthrough and suppression of nonsense codons in Escherichia coli. Mol Gen Genet. 1983;190(2):289–294. [PubMed]
  • Bouadloun F, Srichaiyo T, Isaksson LA, Björk GR. Influence of modification next to the anticodon in tRNA on codon context sensitivity of translational suppression and accuracy. J Bacteriol. 1986 Jun;166(3):1022–1027. [PMC free article] [PubMed]
  • Ericson JU, Björk GR. tRNA anticodons with the modified nucleoside 2-methylthio-N6-(4-hydroxyisopentenyl)adenosine distinguish between bases 3' of the codon. J Mol Biol. 1991 Apr 5;218(3):509–516. [PubMed]
  • Esberg B, Björk GR. The methylthio group (ms2) of N6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms2io6A) present next to the anticodon contributes to the decoding efficiency of the tRNA. J Bacteriol. 1995 Apr;177(8):1967–1975. [PMC free article] [PubMed]
  • Björnsson A, Isaksson LA. UGA codon context which spans three codons. Reversal by ms2i6A37 in tRNA, mutation in rpsD(S4) or streptomycin. J Mol Biol. 1993 Aug 20;232(4):1017–1029. [PubMed]
  • Díaz I, Ehrenberg M. ms2i6A deficiency enhances proofreading in translation. J Mol Biol. 1991 Dec 20;222(4):1161–1171. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...