• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. Nov 15, 1996; 24(22): 4450–4455.
PMCID: PMC146262

Characterization of the basal inhibitor of class II transcription NC2 from Saccharomyces cerevisiae.


Human NC2 utilizes a unique mechanism of repression of transcription by associating with TBP and inhibition of preinitiation complex formation. Here we have cloned two genes from Saccharomyces cerevisiae and functionally characterized them as yeast NC2. We show that yeast NC2 binds to TBP as a heterodimer and represses RNA polymerase II transcription during assembly of the preinitiation complex. Yeast NC2 is highly homologous to its human counterpart within histone fold domains. C-Terminal regions previously discussed to be important for repression in man are in part not conserved. The human alpha but not the beta subunit efficiently heterodimerizes and represses transcription in combination with the corresponding yeast subunit. Yeast and human NC2 inhibit transcription in the presence of yeast and human TBP. However, repression is optimal within one species. The N-terminus of human TBP supports repression of transcription by human but not by yeast NC2.

Full Text

The Full Text of this article is available as a PDF (156K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Auble DT, Hansen KE, Mueller CG, Lane WS, Thorner J, Hahn S. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev. 1994 Aug 15;8(16):1920–1934. [PubMed]
  • Goppelt A, Stelzer G, Lottspeich F, Meisterernst M. A mechanism for repression of class II gene transcription through specific binding of NC2 to TBP-promoter complexes via heterodimeric histone fold domains. EMBO J. 1996 Jun 17;15(12):3105–3116. [PMC free article] [PubMed]
  • Mermelstein F, Yeung K, Cao J, Inostroza JA, Erdjument-Bromage H, Eagelson K, Landsman D, Levitt P, Tempst P, Reinberg D. Requirement of a corepressor for Dr1-mediated repression of transcription. Genes Dev. 1996 Apr 15;10(8):1033–1048. [PubMed]
  • Inostroza JA, Mermelstein FH, Ha I, Lane WS, Reinberg D. Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell. 1992 Aug 7;70(3):477–489. [PubMed]
  • Kim TK, Zhao Y, Ge H, Bernstein R, Roeder RG. TATA-binding protein residues implicated in a functional interplay between negative cofactor NC2 (Dr1) and general factors TFIIA and TFIIB. J Biol Chem. 1995 May 5;270(18):10976–10981. [PubMed]
  • Geiger JH, Hahn S, Lee S, Sigler PB. Crystal structure of the yeast TFIIA/TBP/DNA complex. Science. 1996 May 10;272(5263):830–836. [PubMed]
  • Tan S, Hunziker Y, Sargent DF, Richmond TJ. Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature. 1996 May 9;381(6578):127–151. [PubMed]
  • Bagby S, Kim S, Maldonado E, Tong KI, Reinberg D, Ikura M. Solution structure of the C-terminal core domain of human TFIIB: similarity to cyclin A and interaction with TATA-binding protein. Cell. 1995 Sep 8;82(5):857–867. [PubMed]
  • Nikolov DB, Chen H, Halay ED, Usheva AA, Hisatake K, Lee DK, Roeder RG, Burley SK. Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature. 1995 Sep 14;377(6545):119–128. [PubMed]
  • Nikolov DB, Burley SK. 2.1 A resolution refined structure of a TATA box-binding protein (TBP). Nat Struct Biol. 1994 Sep;1(9):621–637. [PubMed]
  • Kretzschmar M, Stelzer G, Roeder RG, Meisterernst M. RNA polymerase II cofactor PC2 facilitates activation of transcription by GAL4-AH in vitro. Mol Cell Biol. 1994 Jun;14(6):3927–3937. [PMC free article] [PubMed]
  • Pruss D, Hayes JJ, Wolffe AP. Nucleosomal anatomy--where are the histones? Bioessays. 1995 Feb;17(2):161–170. [PubMed]
  • Kuromori T, Yamamoto M. Cloning of cDNAs from Arabidopsis thaliana that encode putative protein phosphatase 2C and a human Dr1-like protein by transformation of a fission yeast mutant. Nucleic Acids Res. 1994 Dec 11;22(24):5296–5301. [PMC free article] [PubMed]
  • Yeung KC, Inostroza JA, Mermelstein FH, Kannabiran C, Reinberg D. Structure-function analysis of the TBP-binding protein Dr1 reveals a mechanism for repression of class II gene transcription. Genes Dev. 1994 Sep 1;8(17):2097–2109. [PubMed]
  • Arents G, Moudrianakis EN. The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11170–11174. [PMC free article] [PubMed]
  • Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10148–10152. [PMC free article] [PubMed]
  • Arents G, Moudrianakis EN. Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10489–10493. [PMC free article] [PubMed]
  • Baxevanis AD, Arents G, Moudrianakis EN, Landsman D. A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic Acids Res. 1995 Jul 25;23(14):2685–2691. [PMC free article] [PubMed]
  • Kim YJ, Björklund S, Li Y, Sayre MH, Kornberg RD. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell. 1994 May 20;77(4):599–608. [PubMed]
  • Koleske AJ, Young RA. An RNA polymerase II holoenzyme responsive to activators. Nature. 1994 Mar 31;368(6470):466–469. [PubMed]
  • Zhou Q, Boyer TG, Berk AJ. Factors (TAFs) required for activated transcription interact with TATA box-binding protein conserved core domain. Genes Dev. 1993 Feb;7(2):180–187. [PubMed]
  • Zhou Q, Berk AJ. The yeast TATA-binding protein (TBP) core domain assembles with human TBP-associated factors into a functional TFIID complex. Mol Cell Biol. 1995 Jan;15(1):534–539. [PMC free article] [PubMed]
  • Kelleher RJ, 3rd, Flanagan PM, Chasman DI, Ponticelli AS, Struhl K, Kornberg RD. Yeast and human TFIIDs are interchangeable for the response to acidic transcriptional activators in vitro. Genes Dev. 1992 Feb;6(2):296–303. [PubMed]
  • Hahn S, Buratowski S, Sharp PA, Guarente L. Identification of a yeast protein homologous in function to the mammalian general transcription factor, TFIIA. EMBO J. 1989 Nov;8(11):3379–3382. [PMC free article] [PubMed]
  • Ozer J, Moore PA, Bolden AH, Lee A, Rosen CA, Lieberman PM. Molecular cloning of the small (gamma) subunit of human TFIIA reveals functions critical for activated transcription. Genes Dev. 1994 Oct 1;8(19):2324–2335. [PubMed]
  • Ranish JA, Lane WS, Hahn S. Isolation of two genes that encode subunits of the yeast transcription factor IIA. Science. 1992 Feb 28;255(5048):1127–1129. [PubMed]
  • Kim IS, Sinha S, de Crombrugghe B, Maity SN. Determination of functional domains in the C subunit of the CCAAT-binding factor (CBF) necessary for formation of a CBF-DNA complex: CBF-B interacts simultaneously with both the CBF-A and CBF-C subunits to form a heterotrimeric CBF molecule. Mol Cell Biol. 1996 Aug;16(8):4003–4013. [PMC free article] [PubMed]
  • Sinha S, Kim IS, Sohn KY, de Crombrugghe B, Maity SN. Three classes of mutations in the A subunit of the CCAAT-binding factor CBF delineate functional domains involved in the three-step assembly of the CBF-DNA complex. Mol Cell Biol. 1996 Jan;16(1):328–337. [PMC free article] [PubMed]
  • Elfring LK, Deuring R, McCallum CM, Peterson CL, Tamkun JW. Identification and characterization of Drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Mol Cell Biol. 1994 Apr;14(4):2225–2234. [PMC free article] [PubMed]
  • Hoffmann A, Chiang CM, Oelgeschläger T, Xie X, Burley SK, Nakatani Y, Roeder RG. A histone octamer-like structure within TFIID. Nature. 1996 Mar 28;380(6572):356–359. [PubMed]
  • Xie X, Kokubo T, Cohen SL, Mirza UA, Hoffmann A, Chait BT, Roeder RG, Nakatani Y, Burley SK. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature. 1996 Mar 28;380(6572):316–322. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Gene
    Gene links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene links
  • MedGen
    Related information in MedGen
  • Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Published protein sequences
  • PubMed
    PubMed citations for these articles
  • Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...