• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. May 2003; 164(1): 65–79.
PMCID: PMC1462548

Characterization of the hyperrecombination phenotype of the pol3-t mutation of Saccharomyces cerevisiae.

Abstract

The DNA polymerase delta (Pol3p/Cdc2p) allele pol3-t of Saccharomyces cerevisiae has previously been shown to increase the frequency of deletions between short repeats (several base pairs), between homologous DNA sequences separated by long inverted repeats, and between distant short repeats, increasing the frequency of genomic deletions. We found that the pol3-t mutation increased intrachromosomal recombination events between direct DNA repeats up to 36-fold and interchromosomal recombination 14-fold. The hyperrecombination phenotype of pol3-t was partially dependent on the Rad52p function but much more so on Rad1p. However, in the double-mutant rad1 Delta rad52 Delta, the pol3-t mutation still increased spontaneous intrachromosomal recombination frequencies, suggesting that a Rad1p Rad52p-independent single-strand annealing pathway is involved. UV and gamma-rays were less potent inducers of recombination in the pol3-t mutant, indicating that Pol3p is partly involved in DNA-damage-induced recombination. In contrast, while UV- and gamma-ray-induced intrachromosomal recombination was almost completely abolished in the rad52 or the rad1 rad52 mutant, there was still good induction in those mutants in the pol3-t background, indicating channeling of lesions into the above-mentioned Rad1p Rad52p-independent pathway. Finally, a heterozygous pol3-t/POL3 mutant also showed an increased frequency of deletions and MMS sensitivity at the restrictive temperature, indicating that even a heterozygous polymerase delta mutation might increase the frequency of genetic instability.

Full Text

The Full Text of this article is available as a PDF (122K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aguilera A, Klein HL. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics. 1988 Aug;119(4):779–790. [PMC free article] [PubMed]
  • Belmaaza A, Chartrand P. One-sided invasion events in homologous recombination at double-strand breaks. Mutat Res. 1994 May;314(3):199–208. [PubMed]
  • Bishop AJ, Schiestl RH. Homologous recombination as a mechanism for genome rearrangements: environmental and genetic effects. Hum Mol Genet. 2000 Oct;9(16):2427–2334. [PubMed]
  • Bishop AJ, Schiestl RH. Homologous recombination as a mechanism of carcinogenesis. Biochim Biophys Acta. 2001 Mar 21;1471(3):M109–M121. [PubMed]
  • Blank A, Kim B, Loeb LA. DNA polymerase delta is required for base excision repair of DNA methylation damage in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9047–9051. [PMC free article] [PubMed]
  • Boeke JD, LaCroute F, Fink GR. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345–346. [PubMed]
  • Brooks M, Dumas LB. DNA primase isolated from the yeast DNA primase-DNA polymerase complex. Immunoaffinity purification and analysis of RNA primer synthesis. J Biol Chem. 1989 Feb 25;264(6):3602–3610. [PubMed]
  • Budd ME, Campbell JL. DNA polymerases delta and epsilon are required for chromosomal replication in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Jan;13(1):496–505. [PMC free article] [PubMed]
  • Budd ME, Campbell JL. DNA polymerases required for repair of UV-induced damage in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Apr;15(4):2173–2179. [PMC free article] [PubMed]
  • Burgers PM. Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases delta and epsilon. J Biol Chem. 1991 Nov 25;266(33):22698–22706. [PubMed]
  • Datta A, Schmeits JL, Amin NS, Lau PJ, Myung K, Kolodner RD. Checkpoint-dependent activation of mutagenic repair in Saccharomyces cerevisiae pol3-01 mutants. Mol Cell. 2000 Sep;6(3):593–603. [PubMed]
  • Fabre F, Boulet A, Faye G. Possible involvement of the yeast POLIII DNA polymerase in induced gene conversion. Mol Gen Genet. 1991 Oct;229(3):353–356. [PubMed]
  • Fishman-Lobell J, Haber JE. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science. 1992 Oct 16;258(5081):480–484. [PubMed]
  • Liefshitz B, Parket A, Maya R, Kupiec M. The role of DNA repair genes in recombination between repeated sequences in yeast. Genetics. 1995 Aug;140(4):1199–1211. [PMC free article] [PubMed]
  • Galli A, Schiestl RH. On the mechanism of UV and gamma-ray-induced intrachromosomal recombination in yeast cells synchronized in different stages of the cell cycle. Mol Gen Genet. 1995 Aug 21;248(3):301–310. [PubMed]
  • Galli A, Schiestl RH. Effect of Salmonella assay negative and positive carcinogens on intrachromosomal recombination in S-phase arrested yeast cells. Mutat Res. 1998 Nov 9;419(1-3):53–68. [PubMed]
  • Morrison A, Sugino A. The 3'-->5' exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol Gen Genet. 1994 Feb;242(3):289–296. [PubMed]
  • Galli A, Schiestl RH. Effects of DNA double-strand and single-strand breaks on intrachromosomal recombination events in cell-cycle-arrested yeast cells. Genetics. 1998 Jul;149(3):1235–1250. [PMC free article] [PubMed]
  • Orr-Weaver TL, Szostak JW. Fungal recombination. Microbiol Rev. 1985 Mar;49(1):33–58. [PMC free article] [PubMed]
  • Galli A, Schiestl RH. Cell division transforms mutagenic lesions into deletion-recombinagenic lesions in yeast cells. Mutat Res. 1999 Aug 11;429(1):13–26. [PubMed]
  • Pâques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999 Jun;63(2):349–404. [PMC free article] [PubMed]
  • Gary R, Park MS, Nolan JP, Cornelius HL, Kozyreva OG, Tran HT, Lobachev KS, Resnick MA, Gordenin DA. A novel role in DNA metabolism for the binding of Fen1/Rad27 to PCNA and implications for genetic risk. Mol Cell Biol. 1999 Aug;19(8):5373–5382. [PMC free article] [PubMed]
  • Paulovich AG, Armour CD, Hartwell LH. The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage. Genetics. 1998 Sep;150(1):75–93. [PMC free article] [PubMed]
  • Gietz D, St Jean A, Woods RA, Schiestl RH. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. [PMC free article] [PubMed]
  • Petes TD, Hill CW. Recombination between repeated genes in microorganisms. Annu Rev Genet. 1988;22:147–168. [PubMed]
  • Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995 Apr 15;11(4):355–360. [PubMed]
  • Giot L, Chanet R, Simon M, Facca C, Faye G. Involvement of the yeast DNA polymerase delta in DNA repair in vivo. Genetics. 1997 Aug;146(4):1239–1251. [PMC free article] [PubMed]
  • Prado F, Aguilera A. Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: different requirements for the RAD1, RAD10, and RAD52 genes. Genetics. 1995 Jan;139(1):109–123. [PMC free article] [PubMed]
  • Gordenin DA, Resnick MA. Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat Res. 1998 May 25;400(1-2):45–58. [PubMed]
  • Santos-Rosa H, Aguilera A. Increase in incidence of chromosome instability and non-conservative recombination between repeats in Saccharomyces cerevisiae hpr1 delta strains. Mol Gen Genet. 1994 Oct 28;245(2):224–236. [PubMed]
  • Gordenin DA, Malkova AL, Peterzen A, Kulikov VN, Pavlov YI, Perkins E, Resnick MA. Transposon Tn5 excision in yeast: influence of DNA polymerases alpha, delta, and epsilon and repair genes. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3785–3789. [PMC free article] [PubMed]
  • Saparbaev M, Prakash L, Prakash S. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae. Genetics. 1996 Mar;142(3):727–736. [PMC free article] [PubMed]
  • Haber JE. Exploring the pathways of homologous recombination. Curr Opin Cell Biol. 1992 Jun;4(3):401–412. [PubMed]
  • Hartwell LH, Smith D. Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics. 1985 Jul;110(3):381–395. [PMC free article] [PubMed]
  • Schiestl RH, Prakash S. RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol Cell Biol. 1988 Sep;8(9):3619–3626. [PMC free article] [PubMed]
  • Holmes AM, Haber JE. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell. 1999 Feb 5;96(3):415–424. [PubMed]
  • Schiestl RH, Prakash S. RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination. Mol Cell Biol. 1990 Jun;10(6):2485–2491. [PMC free article] [PubMed]
  • Ivanov EL, Haber JE. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Apr;15(4):2245–2251. [PMC free article] [PubMed]
  • Schiestl RH, Igarashi S, Hastings PJ. Analysis of the mechanism for reversion of a disrupted gene. Genetics. 1988 Jun;119(2):237–247. [PMC free article] [PubMed]
  • Ivanov EL, Sugawara N, Fishman-Lobell J, Haber JE. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics. 1996 Mar;142(3):693–704. [PMC free article] [PubMed]
  • Smith J, Rothstein R. An allele of RFA1 suppresses RAD52-dependent double-strand break repair in Saccharomyces cerevisiae. Genetics. 1999 Feb;151(2):447–458. [PMC free article] [PubMed]
  • Kadyk LC, Hartwell LH. Replication-dependent sister chromatid recombination in rad1 mutants of Saccharomyces cerevisiae. Genetics. 1993 Mar;133(3):469–487. [PMC free article] [PubMed]
  • Tran HT, Degtyareva NP, Koloteva NN, Sugino A, Masumoto H, Gordenin DA, Resnick MA. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol Cell Biol. 1995 Oct;15(10):5607–5617. [PMC free article] [PubMed]
  • Kaufmann WK, Paules RS. DNA damage and cell cycle checkpoints. FASEB J. 1996 Feb;10(2):238–247. [PubMed]
  • Klein HL. Different types of recombination events are controlled by the RAD1 and RAD52 genes of Saccharomyces cerevisiae. Genetics. 1988 Oct;120(2):367–377. [PMC free article] [PubMed]
  • Tran HT, Gordenin DA, Resnick MA. The prevention of repeat-associated deletions in Saccharomyces cerevisiae by mismatch repair depends on size and origin of deletions. Genetics. 1996 Aug;143(4):1579–1587. [PMC free article] [PubMed]
  • Klein HL. Genetic control of intrachromosomal recombination. Bioessays. 1995 Feb;17(2):147–159. [PubMed]
  • Tran H, Degtyareva N, Gordenin D, Resnick MA. Altered replication and inverted repeats induce mismatch repair-independent recombination between highly diverged DNAs in yeast. Mol Cell Biol. 1997 Feb;17(2):1027–1036. [PMC free article] [PubMed]
  • Tran HT, Gordenin DA, Resnick MA. The 3'-->5' exonucleases of DNA polymerases delta and epsilon and the 5'-->3' exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Mar;19(3):2000–2007. [PMC free article] [PubMed]
  • Wang TS. Eukaryotic DNA polymerases. Annu Rev Biochem. 1991;60:513–552. [PubMed]
  • Zehfus BR, McWilliams AD, Lin YH, Hoekstra MF, Keil RL. Genetic control of RNA polymerase I-stimulated recombination in yeast. Genetics. 1990 Sep;126(1):41–52. [PMC free article] [PubMed]
  • Voelkel-Meiman K, Keil RL, Roeder GS. Recombination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I. Cell. 1987 Mar 27;48(6):1071–1079. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...