• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. May 2003; 164(1): 209–222.
PMCID: PMC1462538

Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster.

Abstract

The indirect flight muscles (IFM) of Drosophila melanogaster provide a good genetic system with which to investigate muscle function. Flight muscle contraction is regulated by both stretch and Ca(2+)-induced thin filament (actin + tropomyosin + troponin complex) activation. Some mutants in troponin-I (TnI) and troponin-T (TnT) genes cause a "hypercontraction" muscle phenotype, suggesting that this condition arises from defects in Ca(2+) regulation and actomyosin-generated tension. We have tested the hypothesis that missense mutations of the myosin heavy chain gene, Mhc, which suppress the hypercontraction of the TnI mutant held-up(2) (hdp(2)), do so by reducing actomyosin force production. Here we show that a "headless" Mhc transgenic fly construct that reduces the myosin head concentration in the muscle thick filaments acts as a dose-dependent suppressor of hypercontracting alleles of TnI, TnT, Mhc, and flightin genes. The data suggest that most, if not all, mutants causing hypercontraction require actomyosin-produced forces to do so. Whether all Mhc suppressors act simply by reducing the force production of the thick filament is discussed with respect to current models of myosin function and thin filament activation by the binding of calcium to the troponin complex.

Full Text

The Full Text of this article is available as a PDF (596K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Finol HJ, Márquez A, Navas E, de Navas NR. Extraocular muscle ultrastructural pathology in the paraneoplastic phenomenon associated with retinoblastoma. J Exp Clin Cancer Res. 2001 Jun;20(2):281–285. [PubMed]
  • García-Añoveros J, García JA, Liu JD, Corey DP. The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neuron. 1998 Jun;20(6):1231–1241. [PubMed]
  • Lehrer SS, Geeves MA. The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol. 1998 Apr 17;277(5):1081–1089. [PubMed]
  • George EL, Ober MB, Emerson CP., Jr Functional domains of the Drosophila melanogaster muscle myosin heavy-chain gene are encoded by alternatively spliced exons. Mol Cell Biol. 1989 Jul;9(7):2957–2974. [PMC free article] [PubMed]
  • Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000 Apr;80(2):853–924. [PubMed]
  • Korswagen HC, Park JH, Ohshima Y, Plasterk RH. An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration. Genes Dev. 1997 Jun 15;11(12):1493–1503. [PubMed]
  • Kronert WA, O'Donnell PT, Fieck A, Lawn A, Vigoreaux JO, Sparrow JC, Bernstein SI. Defects in the Drosophila myosin rod permit sarcomere assembly but cause flight muscle degeneration. J Mol Biol. 1995 May 26;249(1):111–125. [PubMed]
  • Kronert WA, Acebes A, Ferrús A, Bernstein SI. Specific myosin heavy chain mutations suppress troponin I defects in Drosophila muscles. J Cell Biol. 1999 Mar 8;144(5):989–1000. [PMC free article] [PubMed]
  • Lankford EB, Epstein ND, Fananapazir L, Sweeney HL. Abnormal contractile properties of muscle fibers expressing beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J Clin Invest. 1995 Mar;95(3):1409–1414. [PMC free article] [PubMed]
  • McKillop DF, Geeves MA. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J. 1993 Aug;65(2):693–701. [PMC free article] [PubMed]
  • An HS, Mogami K. Isolation of 88F actin mutants of Drosophila melanogaster and possible alterations in the mutant actin structures. J Mol Biol. 1996 Jul 26;260(4):492–505. [PubMed]
  • Monticello TM, Sargent CA, McGill JR, Barton DS, Grover GJ. Amelioration of ischemia/reperfusion injury in isolated rats hearts by the ATP-sensitive potassium channel opener BMS-180448. Cardiovasc Res. 1996 Jan;31(1):93–101. [PubMed]
  • Barbas JA, Galceran J, Torroja L, Prado A, Ferrús A. Abnormal muscle development in the heldup3 mutant of Drosophila melanogaster is caused by a splicing defect affecting selected troponin I isoforms. Mol Cell Biol. 1993 Mar;13(3):1433–1439. [PMC free article] [PubMed]
  • Naimi B, Harrison A, Cummins M, Nongthomba U, Clark S, Canal I, Ferrus A, Sparrow JC. A tropomyosin-2 mutation suppresses a troponin I myopathy in Drosophila. Mol Biol Cell. 2001 May;12(5):1529–1539. [PMC free article] [PubMed]
  • Barthmaier P, Fyrberg E. Monitoring development and pathology of Drosophila indirect flight muscles using green fluorescent protein. Dev Biol. 1995 Jun;169(2):770–774. [PubMed]
  • Nongthomba U, Ramachandra NB. A direct screen identifies new flight muscle mutants on the Drosophila second chromosome. Genetics. 1999 Sep;153(1):261–274. [PMC free article] [PubMed]
  • Beall CJ, Fyrberg E. Muscle abnormalities in Drosophila melanogaster heldup mutants are caused by missing or aberrant troponin-I isoforms. J Cell Biol. 1991 Sep;114(5):941–951. [PMC free article] [PubMed]
  • O'Donnell PT, Bernstein SI. Molecular and ultrastructural defects in a Drosophila myosin heavy chain mutant: differential effects on muscle function produced by similar thick filament abnormalities. J Cell Biol. 1988 Dec;107(6 Pt 2):2601–2612. [PMC free article] [PubMed]
  • Palmiter KA, Tyska MJ, Haeberle JR, Alpert NR, Fananapazir L, Warshaw DM. R403Q and L908V mutant beta-cardiac myosin from patients with familial hypertrophic cardiomyopathy exhibit enhanced mechanical performance at the single molecule level. J Muscle Res Cell Motil. 2000;21(7):609–620. [PubMed]
  • Bhatti S, Zimmer G, Bereiter-Hahn J. Enzyme release from chick myocytes during hypoxia and reoxygenation: dependence on pH. J Mol Cell Cardiol. 1989 Oct;21(10):995–1008. [PubMed]
  • Prado A, Canal I, Barbas JA, Molloy J, Ferrús A. Functional recovery of troponin I in a Drosophila heldup mutant after a second site mutation. Mol Biol Cell. 1995 Nov;6(11):1433–1441. [PMC free article] [PubMed]
  • Coonar AS, McKenna WJ. Molecular genetics of familial cardiomyopathies. Adv Genet. 1997;35:285–324. [PubMed]
  • Cozzi F, Cerletti M, Luvoni GC, Lombardo R, Brambilla PG, Faverzani S, Blasevich F, Cornelio F, Pozza O, Mora M. Development of muscle pathology in canine X-linked muscular dystrophy. II. Quantitative characterization of histopathological progression during postnatal skeletal muscle development. Acta Neuropathol. 2001 May;101(5):469–478. [PubMed]
  • Rayment I, Rypniewski WR, Schmidt-Bäse K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. [PubMed]
  • Cripps RM, Becker KD, Mardahl M, Kronert WA, Hodges D, Bernstein SI. Transformation of Drosophila melanogaster with the wild-type myosin heavy-chain gene: rescue of mutant phenotypes and analysis of defects caused by overexpression. J Cell Biol. 1994 Aug;126(3):689–699. [PMC free article] [PubMed]
  • Rayment I, Holden HM, Sellers JR, Fananapazir L, Epstein ND. Structural interpretation of the mutations in the beta-cardiac myosin that have been implicated in familial hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3864–3868. [PMC free article] [PubMed]
  • Cripps RM, Suggs JA, Bernstein SI. Assembly of thick filaments and myofibrils occurs in the absence of the myosin head. EMBO J. 1999 Apr 1;18(7):1793–1804. [PMC free article] [PubMed]
  • Razzaq A, Schmitz S, Veigel C, Molloy JE, Geeves MA, Sparrow JC. Actin residue glu(93) is identified as an amino acid affecting myosin binding. J Biol Chem. 1999 Oct 1;274(40):28321–28328. [PubMed]
  • Cuda G, Fananapazir L, Zhu WS, Sellers JR, Epstein ND. Skeletal muscle expression and abnormal function of beta-myosin in hypertrophic cardiomyopathy. J Clin Invest. 1993 Jun;91(6):2861–2865. [PMC free article] [PubMed]
  • Redwood CS, Moolman-Smook JC, Watkins H. Properties of mutant contractile proteins that cause hypertrophic cardiomyopathy. Cardiovasc Res. 1999 Oct;44(1):20–36. [PubMed]
  • Reedy MC, Beall C. Ultrastructure of developing flight muscle in Drosophila. I. Assembly of myofibrils. Dev Biol. 1993 Dec;160(2):443–465. [PubMed]
  • Reedy MC, Bullard B, Vigoreaux JO. Flightin is essential for thick filament assembly and sarcomere stability in Drosophila flight muscles. J Cell Biol. 2000 Dec 25;151(7):1483–1500. [PMC free article] [PubMed]
  • Uyeda TQ, Ruppel KM, Spudich JA. Enzymatic activities correlate with chimaeric substitutions at the actin-binding face of myosin. Nature. 1994 Apr 7;368(6471):567–569. [PubMed]
  • Rovner AS, Freyzon Y, Trybus KM. Chimeric substitutions of the actin-binding loop activate dephosphorylated but not phosphorylated smooth muscle heavy meromyosin. J Biol Chem. 1995 Dec 22;270(51):30260–30263. [PubMed]
  • Vassylyev DG, Takeda S, Wakatsuki S, Maeda K, Maéda Y. Crystal structure of troponin C in complex with troponin I fragment at 2.3-A resolution. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4847–4852. [PMC free article] [PubMed]
  • Schmitz S, Clayton J, Nongthomba U, Prinz H, Veigel C, Geeves M, Sparrow J. Drosophila ACT88F indirect flight muscle-specific actin is not N-terminally acetylated: a mutation in N-terminal processing affects actin function. J Mol Biol. 2000 Feb 4;295(5):1201–1210. [PubMed]
  • Vigoreaux JO. Genetics of the Drosophila flight muscle myofibril: a window into the biology of complex systems. Bioessays. 2001 Nov;23(11):1047–1063. [PubMed]
  • Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell. 2001 Feb 23;104(4):557–567. [PubMed]
  • Vigoreaux JO, Saide JD, Valgeirsdottir K, Pardue ML. Flightin, a novel myofibrillar protein of Drosophila stretch-activated muscles. J Cell Biol. 1993 May;121(3):587–598. [PMC free article] [PubMed]
  • Steward R, Nüsslein-Volhard C. The genetics of the dorsal-Bicaudal-D region of Drosophila melanogaster. Genetics. 1986 Jul;113(3):665–678. [PMC free article] [PubMed]
  • Yamashita H, Tyska MJ, Warshaw DM, Lowey S, Trybus KM. Functional consequences of mutations in the smooth muscle myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. J Biol Chem. 2000 Sep 8;275(36):28045–28052. [PubMed]
  • Swank DM, Bartoo ML, Knowles AF, Iliffe C, Bernstein SI, Molloy JE, Sparrow JC. Alternative exon-encoded regions of Drosophila myosin heavy chain modulate ATPase rates and actin sliding velocity. J Biol Chem. 2001 May 4;276(18):15117–15124. [PubMed]
  • Zhang S, Bernstein SI. Spatially and temporally regulated expression of myosin heavy chain alternative exons during Drosophila embryogenesis. Mech Dev. 2001 Mar;101(1-2):35–45. [PubMed]
  • Swank Douglas M, Knowles Aileen F, Suggs Jennifer A, Sarsoza Floyd, Lee Annie, Maughan David W, Bernstein Sanford I. The myosin converter domain modulates muscle performance. Nat Cell Biol. 2002 Apr;4(4):312–316. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...