• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Jun 2002; 161(2): 747–762.
PMCID: PMC1462152

A mutational analysis of dishevelled in Drosophila defines novel domains in the dishevelled protein as well as novel suppressing alleles of axin.

Abstract

Drosophila dishevelled (dsh) functions in two pathways: it is necessary to transduce Wingless (Wg) signaling and it is required in planar cell polarity. To learn more about how Dsh can discriminate between these functions, we performed genetic screens to isolate additional dsh alleles and we examined the potential role of protein phosphorylation by site-directed mutagenesis. We identified two alleles with point mutations in the Dsh DEP domain that specifically disrupt planar polarity signaling. When positioned in the structure of the DEP domain, these mutations are located close to each other and to a previously identified planar polarity mutation. In addition to the requirement for the DEP domain, we found that a cluster of potential phosphorylation sites in a binding domain for the protein kinase PAR-1 is also essential for planar polarity signaling. To identify regions of dsh that are necessary for Wg signaling, we screened for mutations that modified a GMR-GAL4;UAS-dsh overexpression phenotype in the eye. We recovered many alleles of the transgene containing missense mutations, including mutations in the DIX domain and in the DEP domain, the latter group mapping separately from the planar polarity mutations. In addition, several transgenes had mutations within a domain containing a consensus sequence for an SH3-binding protein. We also recovered second-site-suppressing mutations in axin, mapping at a region that may specifically interact with overexpressed Dsh.

Full Text

The Full Text of this article is available as a PDF (653K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Adler PN, Vinson C, Park WJ, Conover S, Klein L. Molecular structure of frizzled, a Drosophila tissue polarity gene. Genetics. 1990 Oct;126(2):401–416. [PMC free article] [PubMed]
  • Axelrod JD, Miller JR, Shulman JM, Moon RT, Perrimon N. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev. 1998 Aug 15;12(16):2610–2622. [PMC free article] [PubMed]
  • Behrens J, Jerchow BA, Würtele M, Grimm J, Asbrand C, Wirtz R, Kühl M, Wedlich D, Birchmeier W. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science. 1998 Apr 24;280(5363):596–599. [PubMed]
  • Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature. 1996 Jul 18;382(6588):225–230. [PubMed]
  • Bhanot P, Fish M, Jemison JA, Nusse R, Nathans J, Cadigan KM. Frizzled and Dfrizzled-2 function as redundant receptors for Wingless during Drosophila embryonic development. Development. 1999 Sep;126(18):4175–4186. [PubMed]
  • Mayer BJ. SH3 domains: complexity in moderation. J Cell Sci. 2001 Apr;114(Pt 7):1253–1263. [PubMed]
  • Moses K, Rubin GM. Glass encodes a site-specific DNA-binding protein that is regulated in response to positional signals in the developing Drosophila eye. Genes Dev. 1991 Apr;5(4):583–593. [PubMed]
  • Noordermeer J, Johnston P, Rijsewijk F, Nusse R, Lawrence PA. The consequences of ubiquitous expression of the wingless gene in the Drosophila embryo. Development. 1992 Nov;116(3):711–719. [PubMed]
  • Boutros M, Paricio N, Strutt DI, Mlodzik M. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell. 1998 Jul 10;94(1):109–118. [PubMed]
  • Noordermeer J, Klingensmith J, Perrimon N, Nusse R. dishevelled and armadillo act in the wingless signalling pathway in Drosophila. Nature. 1994 Jan 6;367(6458):80–83. [PubMed]
  • Boutros M, Mihaly J, Bouwmeester T, Mlodzik M. Signaling specificity by Frizzled receptors in Drosophila. Science. 2000 Jun 9;288(5472):1825–1828. [PubMed]
  • Pastink A, Vreeken C, Vogel EW, Eeken JC. Mutations induced at the white and vermilion loci in Drosophila melanogaster. Mutat Res. 1990 Jul;231(1):63–71. [PubMed]
  • Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. [PubMed]
  • Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis--a look outside the nucleus. Science. 2000 Mar 3;287(5458):1606–1609. [PubMed]
  • Brunner E, Peter O, Schweizer L, Basler K. pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature. 1997 Feb 27;385(6619):829–833. [PubMed]
  • Perrimon N, Mahowald AP. Multiple functions of segment polarity genes in Drosophila. Dev Biol. 1987 Feb;119(2):587–600. [PubMed]
  • Peters JM, McKay RM, McKay JP, Graff JM. Casein kinase I transduces Wnt signals. Nature. 1999 Sep 23;401(6751):345–350. [PubMed]
  • Rulifson EJ, Wu CH, Nusse R. Pathway specificity by the bifunctional receptor frizzled is determined by affinity for wingless. Mol Cell. 2000 Jul;6(1):117–126. [PubMed]
  • Sakanaka C, Weiss JB, Williams LT. Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3020–3023. [PMC free article] [PubMed]
  • Diaz-Benjumea FJ, Cohen SM. Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development. 1995 Dec;121(12):4215–4225. [PubMed]
  • Sakanaka C, Leong P, Xu L, Harrison SD, Williams LT. Casein kinase iepsilon in the wnt pathway: regulation of beta-catenin function. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12548–12552. [PMC free article] [PubMed]
  • Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell. 1995 May 19;81(4):611–620. [PubMed]
  • Salic A, Lee E, Mayer L, Kirschner MW. Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol Cell. 2000 Mar;5(3):523–532. [PubMed]
  • Hamada F, Tomoyasu Y, Takatsu Y, Nakamura M, Nagai S, Suzuki A, Fujita F, Shibuya H, Toyoshima K, Ueno N, et al. Negative regulation of Wingless signaling by D-axin, a Drosophila homolog of axin. Science. 1999 Mar 12;283(5408):1739–1742. [PubMed]
  • Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol. 1998 May 7;8(10):573–581. [PubMed]
  • Shulman JM, Benton R, St Johnston D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell. 2000 May 12;101(4):377–388. [PubMed]
  • Hino S, Kishida S, Michiue T, Fukui A, Sakamoto I, Takada S, Asashima M, Kikuchi A. Inhibition of the Wnt signaling pathway by Idax, a novel Dvl-binding protein. Mol Cell Biol. 2001 Jan;21(1):330–342. [PMC free article] [PubMed]
  • Siegfried E, Chou TB, Perrimon N. wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell. 1992 Dec 24;71(7):1167–1179. [PubMed]
  • Huynh JR, Shulman JM, Benton R, St Johnston D. PAR-1 is required for the maintenance of oocyte fate in Drosophila. Development. 2001 Apr;128(7):1201–1209. [PubMed]
  • Siegfried E, Wilder EL, Perrimon N. Components of wingless signalling in Drosophila. Nature. 1994 Jan 6;367(6458):76–80. [PubMed]
  • Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 1998 Mar 2;17(5):1371–1384. [PMC free article] [PubMed]
  • Smalley MJ, Sara E, Paterson H, Naylor S, Cook D, Jayatilake H, Fryer LG, Hutchinson L, Fry MJ, Dale TC. Interaction of axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J. 1999 May 17;18(10):2823–2835. [PMC free article] [PubMed]
  • Kay BK, Williamson MP, Sudol M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 2000 Feb;14(2):231–241. [PubMed]
  • Strapps WR, Tomlinson A. Transducing properties of Drosophila Frizzled proteins. Development. 2001 Dec;128(23):4829–4835. [PubMed]
  • Kishida S, Yamamoto H, Hino S, Ikeda S, Kishida M, Kikuchi A. DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate beta-catenin stability. Mol Cell Biol. 1999 Jun;19(6):4414–4422. [PMC free article] [PubMed]
  • Strovel ET, Wu D, Sussman DJ. Protein phosphatase 2Calpha dephosphorylates axin and activates LEF-1-dependent transcription. J Biol Chem. 2000 Jan 28;275(4):2399–2403. [PubMed]
  • Strutt DI, Weber U, Mlodzik M. The role of RhoA in tissue polarity and Frizzled signalling. Nature. 1997 May 15;387(6630):292–295. [PubMed]
  • Sun TQ, Lu B, Feng JJ, Reinhard C, Jan YN, Fantl WJ, Williams LT. PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nat Cell Biol. 2001 Jul;3(7):628–636. [PubMed]
  • Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS, Young MW. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell. 1998 Jul 10;94(1):97–107. [PubMed]
  • Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X. LDL-receptor-related proteins in Wnt signal transduction. Nature. 2000 Sep 28;407(6803):530–535. [PubMed]
  • Krasnow RE, Wong LL, Adler PN. Dishevelled is a component of the frizzled signaling pathway in Drosophila. Development. 1995 Dec;121(12):4095–4102. [PubMed]
  • Theisen H, Purcell J, Bennett M, Kansagara D, Syed A, Marsh JL. dishevelled is required during wingless signaling to establish both cell polarity and cell identity. Development. 1994 Feb;120(2):347–360. [PubMed]
  • Li L, Yuan H, Weaver CD, Mao J, Farr GH, 3rd, Sussman DJ, Jonkers J, Kimelman D, Wu D. Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J. 1999 Aug 2;18(15):4233–4240. [PMC free article] [PubMed]
  • Tomancak P, Piano F, Riechmann V, Gunsalus KC, Kemphues KJ, Ephrussi A. A Drosophila melanogaster homologue of Caenorhabditis elegans par-1 acts at an early step in embryonic-axis formation. Nat Cell Biol. 2000 Jul;2(7):458–460. [PubMed]
  • Wodarz A, Hinz U, Engelbert M, Knust E. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell. 1995 Jul 14;82(1):67–76. [PubMed]
  • van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J, Ypma A, Hursh D, Jones T, Bejsovec A, et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell. 1997 Mar 21;88(6):789–799. [PubMed]
  • Wong HC, Mao J, Nguyen JT, Srinivas S, Zhang W, Liu B, Li L, Wu D, Zheng J. Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Nat Struct Biol. 2000 Dec;7(12):1178–1184. [PubMed]
  • Wehrli M, Dougan ST, Caldwell K, O'Keefe L, Schwartz S, Vaizel-Ohayon D, Schejter E, Tomlinson A, DiNardo S. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature. 2000 Sep 28;407(6803):527–530. [PubMed]
  • Yamaguchi TP. Heads or tails: Wnts and anterior-posterior patterning. Curr Biol. 2001 Sep 4;11(17):R713–R724. [PubMed]
  • Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem. 1999 Apr 16;274(16):10681–10684. [PubMed]
  • Willert K, Brink M, Wodarz A, Varmus H, Nusse R. Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J. 1997 Jun 2;16(11):3089–3096. [PMC free article] [PubMed]
  • Willert K, Logan CY, Arora A, Fish M, Nusse R. A Drosophila Axin homolog, Daxin, inhibits Wnt signaling. Development. 1999 Sep;126(18):4165–4173. [PubMed]
  • Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998;14:59–88. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Gene
    Gene
    Gene links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • MedGen
    MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • PubMed
    PubMed
    PubMed citations for these articles
  • Taxonomy
    Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...