Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. 2002 Jun; 161(2): 633–641.
PMCID: PMC1462126

Multilocus self-recognition systems in fungi as a cause of trans-species polymorphism.


Trans-species polymorphism, meaning the presence of alleles in different species that are more similar to each other than they are to alleles in the same species, has been found at loci associated with vegetative incompatibility in filamentous fungi. If individuals differ at one or more of these loci (termed het for heterokaryon), they cannot form stable heterokaryons after vegetative fusion. At the het-c locus in Neurospora crassa and related species there is clear evidence of trans-species polymorphism: three alleles have persisted for approximately 30 million years. We analyze a population genetic model of multilocus vegetative incompatibility and find the conditions under which trans-species polymorphism will occur. In the model, several unlinked loci determine the vegetative compatibility group (VCG) of an individual. Individuals of different VCGs fail to form productive heterokaryons, while those of the same VCG form viable heterokaryons. However, viable heterokaryon formation between individuals of the same VCG results in a loss in fitness, presumably via transfer of infectious agents by hyphal fusion or exploitation by aggressive genotypes. The result is a form of balancing selection on all loci affecting an individual's VCG. We analyze this model by making use of a Markov chain/strong selection, weak mutation (SSWM) approximation. We find that trans-species polymorphism of the type that has been found at the het-c locus is expected to occur only when the appearance of new incompatibility alleles is strongly constrained, because the rate of mutation to such alleles is very low, because the number of possible incompatibility alleles at each locus is restricted, or because the number of incompatibility loci is limited.

Full Text

The Full Text of this article is available as a PDF (114K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Hartl DL, Dempster ER, Brown SW. Adaptive significance of vegetative incompatibility in Neurospora crassa. Genetics. 1975 Nov;81(3):553–569. [PMC free article] [PubMed]
  • Ioerger TR, Clark AG, Kao TH. Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9732–9735. [PMC free article] [PubMed]
  • Jinks JL, Caten CE, Simchen G, Croft JH. Heterokaryon incompatibility and variation in wild populations of Aspergillus nidulans. Heredity (Edinb) 1966 May;21(2):227–239. [PubMed]
  • Kelly JK, Wade MJ. Molecular evolution near a two-locus balanced polymorphism. J Theor Biol. 2000 May 7;204(1):83–101. [PubMed]
  • Leslie JF. Fungal vegetative compatibility. Annu Rev Phytopathol. 1993;31:127–150. [PubMed]
  • Milgroom MG, Cortesi P. Analysis of population structure of the chestnut blight fungus based on vegetative incompatibility genotypes. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10518–10523. [PMC free article] [PubMed]
  • Mir-Rashed N, Jacobson DJ, Dehghany MR, Micali OC, Smith ML. Molecular and functional analyses of incompatibility genes at het-6 in a population of Neurospora crassa. Fungal Genet Biol. 2000 Aug;30(3):197–205. [PubMed]
  • Mylyk OM. Heteromorphism for Heterokaryon Incompatibility Genes in Natural Populations of NEUROSPORA CRASSA. Genetics. 1976 Jun;83(2):275–284. [PMC free article] [PubMed]
  • Anwar MM, Croft JH, Dales RB. Analysis of heterokaryon incompatibility between heterokaryon-compatibility (h-c) groups R and GL provides evidence that at least eight het loci control somatic incompatibility in Aspergillus nidulans. J Gen Microbiol. 1993 Jul;139(7):1599–1603. [PubMed]
  • Arden B, Klein J. Biochemical comparison of major histocompatibility complex molecules from different subspecies of Mus musculus: evidence for trans-specific evolution of alleles. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2342–2346. [PMC free article] [PubMed]
  • Pandit A, Maheshwari R. A Demonstration of the Role of het Genes in Heterokaryon Formation in Neurospora under Simulated Field Conditions. Fungal Genet Biol. 1996 Mar;20(1):99–102. [PubMed]
  • Bégueret J, Turcq B, Clavé C. Vegetative incompatibility in filamentous fungi: het genes begin to talk. Trends Genet. 1994 Dec;10(12):441–446. [PubMed]
  • Perkins DD, Davis RH. Neurospora at the millennium. Fungal Genet Biol. 2000 Dec;31(3):153–167. [PubMed]
  • Bjorkman PJ, Parham P. Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem. 1990;59:253–288. [PubMed]
  • PONTECORVO G. The parasexual cycle in fungi. Annu Rev Microbiol. 1956;10:393–400. [PubMed]
  • Powell AJ, Jacobson DJ, Natvig DO. Allelic diversity at the het-c locus in Neurospora tetrasperma confirms outcrossing in nature and reveals an evolutionary dilemma for pseudohomothallic ascomycetes. J Mol Evol. 2001 Jan;52(1):94–102. [PubMed]
  • Clarke AE, Newbigin E. Molecular aspects of self-incompatibility in flowering plants. Annu Rev Genet. 1993;27:257–279. [PubMed]
  • Cortesi P, Milgroom MG. Genetics of vegetative incompatibility in cryphonectria parasitica . Appl Environ Microbiol. 1998 Aug;64(8):2988–2994. [PMC free article] [PubMed]
  • Debets F, Yang X, Griffiths AJ. Vegetative incompatibility in Neurospora: its effect on horizontal transfer of mitochondrial plasmids and senescence in natural populations. Curr Genet. 1994 Aug;26(2):113–119. [PubMed]
  • Saupe SJ. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev. 2000 Sep;64(3):489–502. [PMC free article] [PubMed]
  • Saupe SJ, Glass NL. Allelic specificity at the het-c heterokaryon incompatibility locus of Neurospora crassa is determined by a highly variable domain. Genetics. 1997 Aug;146(4):1299–1309. [PMC free article] [PubMed]
  • Saupe SJ, Clavé C, Bégueret J. Vegetative incompatibility in filamentous fungi: Podospora and Neurospora provide some clues. Curr Opin Microbiol. 2000 Dec;3(6):608–612. [PubMed]
  • Skupski MP, Jackson DA, Natvig DO. Phylogenetic Analysis of Heterothallic Neurospora Species. Fungal Genet Biol. 1997 Feb;21(1):153–162. [PubMed]
  • Figueroa F, Günther E, Klein J. MHC polymorphism pre-dating speciation. Nature. 1988 Sep 15;335(6187):265–267. [PubMed]
  • Slatkin M. Balancing selection at closely linked, overdominant loci in a finite population. Genetics. 2000 Mar;154(3):1367–1378. [PMC free article] [PubMed]
  • Slatkin M, Muirhead CA. Overdominant alleles in a population of variable size. Genetics. 1999 Jun;152(2):775–781. [PMC free article] [PubMed]
  • Takahata N. A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2419–2423. [PMC free article] [PubMed]
  • Glass NL, Jacobson DJ, Shiu PK. The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu Rev Genet. 2000;34:165–186. [PubMed]
  • van Diepeningen AD, Debets AJ, Hoekstra RF. Heterokaryon incompatibility blocks virus transfer among natural isolates of black Aspergilli. Curr Genet. 1997 Sep;32(3):209–217. [PubMed]
  • Vekemans X, Slatkin M. Gene and allelic genealogies at a gametophytic self-incompatibility locus. Genetics. 1994 Aug;137(4):1157–1165. [PMC free article] [PubMed]
  • Wu J, Saupe SJ, Glass NL. Evidence for balancing selection operating at the het-c heterokaryon incompatibility locus in a group of filamentous fungi. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12398–12403. [PMC free article] [PubMed]
  • Wright S. The Distribution of Self-Sterility Alleles in Populations. Genetics. 1939 Jun;24(4):538–552. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...