• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Apr 2002; 160(4): 1641–1650.
PMCID: PMC1462059

Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway.


The floral developmental pathway in Arabidopsis thaliana is composed of several interacting regulatory genes, including the inflorescence architecture gene TERMINAL FLOWER1 (TFL1), the floral meristem identity genes LEAFY (LFY), APETALA1 (AP1), and CAULIFLOWER (CAL), and the floral organ identity genes APETALA3 (AP3) and PISTILLATA (PI). Molecular population genetic analyses of these different genes indicate that the coding regions of AP3 and PI, as well as AP1 and CAL, share similar levels and patterns of nucleotide diversity. In contrast, the coding regions of TFL1 and LFY display a significant reduction in nucleotide variation, suggesting that these sequences have been subjected to a recent adaptive sweep. Moreover, the promoter of TFL1, unlike its coding region, displays high levels of diversity organized into two distinct haplogroups that appear to be maintained by selection. These results suggest that patterns of molecular evolution differ among regulatory genes in this developmental pathway, with the earlier acting genes exhibiting evidence of adaptive evolution.

Full Text

The Full Text of this article is available as a PDF (162K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Arnone MI, Davidson EH. The hardwiring of development: organization and function of genomic regulatory systems. Development. 1997 May;124(10):1851–1864. [PubMed]
  • Barton NH. Genetic hitchhiking. Philos Trans R Soc Lond B Biol Sci. 2000 Nov 29;355(1403):1553–1562. [PMC free article] [PubMed]
  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Science. 1997 Jan 3;275(5296):80–83. [PubMed]
  • Cronk QC. Plant evolution and development in a post-genomic context. Nat Rev Genet. 2001 Aug;2(8):607–619. [PubMed]
  • Davidson EH. A view from the genome: spatial control of transcription in sea urchin development. Curr Opin Genet Dev. 1999 Oct;9(5):530–541. [PubMed]
  • Doebley J, Lukens L. Transcriptional regulators and the evolution of plant form. Plant Cell. 1998 Jul;10(7):1075–1082. [PMC free article] [PubMed]
  • Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. [PMC free article] [PubMed]
  • Goto K, Meyerowitz EM. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 1994 Jul 1;8(13):1548–1560. [PubMed]
  • Ng M, Yanofsky MF. Three ways to learn the ABCs. Curr Opin Plant Biol. 2000 Feb;3(1):47–52. [PubMed]
  • Purugganan MD. The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. J Mol Evol. 1997 Oct;45(4):392–396. [PubMed]
  • Hamblin MT, Aquadro CF. Contrasting patterns of nucleotide sequence variation at the glucose dehydrogenase (Gld) locus in different populations of Drosophila melanogaster. Genetics. 1997 Apr;145(4):1053–1062. [PMC free article] [PubMed]
  • Purugganan MD. The molecular population genetics of regulatory genes. Mol Ecol. 2000 Oct;9(10):1451–1461. [PubMed]
  • Hasty J, McMillen D, Isaacs F, Collins JJ. Computational studies of gene regulatory networks: in numero molecular biology. Nat Rev Genet. 2001 Apr;2(4):268–279. [PubMed]
  • Purugganan MD, Suddith JI. Molecular population genetics of the Arabidopsis CAULIFLOWER regulatory gene: nonneutral evolution and naturally occurring variation in floral homeotic function. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8130–8134. [PMC free article] [PubMed]
  • Hudson RR, Kreitman M, Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. [PMC free article] [PubMed]
  • Purugganan MD, Suddith JI. Molecular population genetics of floral homeotic loci. Departures from the equilibrium-neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana. Genetics. 1999 Feb;151(2):839–848. [PMC free article] [PubMed]
  • Jack T. Relearning our ABCs: new twists on an old model. Trends Plant Sci. 2001 Jul;6(7):310–316. [PubMed]
  • Jack T, Brockman LL, Meyerowitz EM. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell. 1992 Feb 21;68(4):683–697. [PubMed]
  • Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ. A common mechanism controls the life cycle and architecture of plants. Development. 1998 May;125(9):1609–1615. [PubMed]
  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science. 2000 Oct 13;290(5490):344–347. [PubMed]
  • Ratcliffe OJ, Bradley DJ, Coen ES. Separation of shoot and floral identity in Arabidopsis. Development. 1999 Mar;126(6):1109–1120. [PubMed]
  • Rausher MD, Miller RE, Tiffin P. Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. Mol Biol Evol. 1999 Feb;16(2):266–274. [PubMed]
  • Kawabe A, Miyashita NT. DNA variation in the basic chitinase locus (ChiB) region of the wild plant Arabidopsis thaliana. Genetics. 1999 Nov;153(3):1445–1453. [PMC free article] [PubMed]
  • Rozas J, Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999 Feb;15(2):174–175. [PubMed]
  • Kawabe A, Innan H, Terauchi R, Miyashita NT. Nucleotide polymorphism in the acidic chitinase locus (ChiA) region of the wild plant Arabidopsis thaliana. Mol Biol Evol. 1997 Dec;14(12):1303–1315. [PubMed]
  • Samach A, Kohalmi SE, Motte P, Datla R, Haughn GW. Divergence of function and regulation of class B floral organ identity genes. Plant Cell. 1997 Apr;9(4):559–570. [PMC free article] [PubMed]
  • Kawabe A, Yamane K, Miyashita NT. DNA polymorphism at the cytosolic phosphoglucose isomerase (PgiC) locus of the wild plant Arabidopsis thaliana. Genetics. 2000 Nov;156(3):1339–1347. [PMC free article] [PubMed]
  • Savolainen O, Langley CH, Lazzaro BP, Fr H. Contrasting patterns of nucleotide polymorphism at the alcohol dehydrogenase locus in the outcrossing Arabidopsis lyrata and the selfing Arabidopsis thaliana. Mol Biol Evol. 2000 Apr;17(4):645–655. [PubMed]
  • Kempin SA, Savidge B, Yanofsky MF. Molecular basis of the cauliflower phenotype in Arabidopsis. Science. 1995 Jan 27;267(5197):522–525. [PubMed]
  • Kramer EM, Dorit RL, Irish VF. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics. 1998 Jun;149(2):765–783. [PMC free article] [PubMed]
  • Shu G, Amaral W, Hileman LC, Baum DA. LEAFY and the evolution of rosette flowering in violet cress (Jonopsidium acaule, Brassicaceae). Am J Bot. 2000 May;87(5):634–641. [PubMed]
  • Kuittinen H, Aguadé M. Nucleotide variation at the CHALCONE ISOMERASE locus in Arabidopsis thaliana. Genetics. 2000 Jun;155(2):863–872. [PMC free article] [PubMed]
  • Shubin N, Tabin C, Carroll S. Fossils, genes and the evolution of animal limbs. Nature. 1997 Aug 14;388(6643):639–648. [PubMed]
  • Lawton-Rauh AL, Alvarez-Buylla ER, Purugganan MD. Molecular evolution of flower development. Trends Ecol Evol. 2000 Apr;15(4):144–149. [PubMed]
  • Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell. 1999 Jun;11(6):1007–1018. [PMC free article] [PubMed]
  • Verrelli BC, Eanes WF. Clinal variation for amino acid polymorphisms at the Pgm locus in Drosophila melanogaster. Genetics. 2001 Apr;157(4):1649–1663. [PMC free article] [PubMed]
  • Ludwig MZ, Bergman C, Patel NH, Kreitman M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature. 2000 Feb 3;403(6769):564–567. [PubMed]
  • Wang RL, Stec A, Hey J, Lukens L, Doebley J. The limits of selection during maize domestication. Nature. 1999 Mar 18;398(6724):236–239. [PubMed]
  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature. 1992 Nov 19;360(6401):273–277. [PubMed]
  • Weigel D. The genetics of flower development: from floral induction to ovule morphogenesis. Annu Rev Genet. 1995;29:19–39. [PubMed]
  • Weigel D, Meyerowitz EM. Activation of floral homeotic genes in Arabidopsis. Science. 1993 Sep 24;261(5129):1723–1726. [PubMed]
  • McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. [PubMed]
  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992 May 29;69(5):843–859. [PubMed]
  • Mendoza L, Thieffry D, Alvarez-Buylla ER. Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics. 1999 Jul-Aug;15(7-8):593–606. [PubMed]
  • Smith IE, Flower CD. Review article: imaging in bronchiectasis. Br J Radiol. 1996 Jul;69(823):589–593. [PubMed]
  • Miyashita NT. DNA variation in the 5' upstream region of the Adh locus of the wild plants Arabidopsis thaliana and Arabis gemmifera. Mol Biol Evol. 2001 Feb;18(2):164–171. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...