Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. 2002 Jan; 160(1): 225–234.
PMCID: PMC1461952

Cloning and characterization of the Tribolium castaneum eye-color genes encoding tryptophan oxygenase and kynurenine 3-monooxygenase.


The use of eye-color mutants and their corresponding genes as scorable marker systems has facilitated the development of transformation technology in Drosophila and other insects. In the red flour beetle, Tribolium castaneum, the only currently available system for germline transformation employs the exogenous marker gene, EGFP, driven by an eye-specific promoter. To exploit the advantages offered by eye-pigmentation markers, we decided to develop a transformant selection system for Tribolium on the basis of mutant rescue. The Tribolium orthologs of the Drosophila eye-color genes vermilion (tryptophan oxygenase) and cinnabar (kynurenine 3-monooxygenase) were cloned and characterized. Conceptual translations of Tc vermilion (Tcv) and Tc cinnabar (Tccn) are 71 and 51% identical to their respective Drosophila orthologs. We used RNA interference (RNAi) to show that T. castaneum larvae lacking functional Tcv or Tccn gene products also lack the pigmented eyespots observed in wild-type larvae. Five available eye-color mutations were tested for linkage to Tcv or Tccn via recombinational mapping. No linkage was found between candidate mutations and Tccn. However, tight linkage was found between Tcv and the white-eye mutation white, here renamed vermilion(white) (v(w)). Molecular analysis indicates that 80% of the Tcv coding region is deleted in v(w) beetles. These observations suggest that the Tribolium eye is pigmented only by ommochromes, not pteridines, and indicate that Tcv is potentially useful as a germline transformation marker.

Full Text

The Full Text of this article is available as a PDF (310K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Cherbas L, Cherbas P. The arthropod initiator: the capsite consensus plays an important role in transcription. Insect Biochem Mol Biol. 1993 Jan;23(1):81–90. [PubMed]
  • Coates CJ, Jasinskiene N, Miyashiro L, James AA. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3748–3751. [PMC free article] [PubMed]
  • Cornel AJ, Benedict MQ, Rafferty CS, Howells AJ, Collins FH. Transient expression of the Drosophila melanogaster cinnabar gene rescues eye color in the white eye (WE) strain of Aedes aegypti. Insect Biochem Mol Biol. 1997 Dec;27(12):993–997. [PubMed]
  • Fridell YW, Searles LL. In vivo transcriptional analysis of the TATA-less promoter of the Drosophila melanogaster vermilion gene. Mol Cell Biol. 1992 Oct;12(10):4571–4577. [PMC free article] [PubMed]
  • Ghosh D, Forrest HS. Enzymatic studies on the hydroxylation of kynurenine in Drosophila melanogaster. Genetics. 1967 Mar;55(3):423–431. [PMC free article] [PubMed]
  • Horn C, Jaunich B, Wimmer EA. Highly sensitive, fluorescent transformation marker for Drosophila transgenesis. Dev Genes Evol. 2000 Dec;210(12):623–629. [PubMed]
  • Jasinskiene N, Coates CJ, Benedict MQ, Cornel AJ, Rafferty CS, James AA, Collins FH. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3743–3747. [PMC free article] [PubMed]
  • O'brochta DA, Handler AM. Mobility of P elements in drosophilids and nondrosophilids. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6052–6056. [PMC free article] [PubMed]
  • Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. [PMC free article] [PubMed]
  • Reaume AG, Clark SH, Chovnick A. Xanthine dehydrogenase is transported to the Drosophila eye. Genetics. 1989 Nov;123(3):503–509. [PMC free article] [PubMed]
  • Atkinson PW, Pinkerton AC, O'Brochta DA. Genetic transformation systems in insects. Annu Rev Entomol. 2001;46:317–346. [PubMed]
  • Rubin GM, Spradling AC. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. [PubMed]
  • Searles LL, Ruth RS, Pret AM, Fridell RA, Ali AJ. Structure and transcription of the Drosophila melanogaster vermilion gene and several mutant alleles. Mol Cell Biol. 1990 Apr;10(4):1423–1431. [PMC free article] [PubMed]
  • Baillie DL, Chovnick A. Studies on the genetic control of tryptophan pyrrolase in Drosophila melanogaster. Mol Gen Genet. 1971;112(4):341–353. [PubMed]
  • Shippy TD, Brown SJ, Denell RE. Maxillopedia is the Tribolium ortholog of proboscipedia. Evol Dev. 2000 May-Jun;2(3):145–151. [PubMed]
  • Smale ST. Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim Biophys Acta. 1997 Mar 20;1351(1-2):73–88. [PubMed]
  • Beadle GW, Ephrussi B. Development of Eye Colors in Drosophila: Diffusible Substances and Their Interrelations. Genetics. 1937 Jan;22(1):76–86. [PMC free article] [PubMed]
  • Beard CB, Benedict MQ, Primus JP, Finnerty V, Collins FH. Eye pigments in wild-type and eye-color mutant strains of the African malaria vector Anopheles gambiae. J Hered. 1995 Sep-Oct;86(5):375–380. [PubMed]
  • Warren WD, Palmer S, Howells AJ. Molecular characterization of the cinnabar region of Drosophila melanogaster: identification of the cinnabar transcription unit. Genetica. 1996;98(3):249–262. [PubMed]
  • Beeman RW, Stauth DM. Rapid cloning of insect transposon insertion junctions using 'universal' PCR. Insect Mol Biol. 1997 Feb;6(1):83–88. [PubMed]
  • White LD, Coates CJ, Atkinson PW, O'Brochta DA. An eye color gene for the detection of transgenic non-drosophilid insects. Insect Biochem Mol Biol. 1996 Jul;26(7):641–644. [PubMed]
  • Berghammer AJ, Klingler M, Wimmer EA. A universal marker for transgenic insects. Nature. 1999 Nov 25;402(6760):370–371. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem chemical compound records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records. Multiple substance records may contribute to the PubChem compound record.
  • Gene
    Gene records that cite the current articles. Citations in Gene are added manually by NCBI or imported from outside public resources.
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence and PMC links.
  • MedGen
    Related information in MedGen
  • Nucleotide
    Primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • Protein
    Protein translation features of primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.
  • Taxonomy
    Taxonomy records associated with the current articles through taxonomic information on related molecular database records (Nucleotide, Protein, Gene, SNP, Structure).
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...