• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Nov 2001; 159(3): 1059–1072.
PMCID: PMC1461854

A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla.

Abstract

We identified a large family of putative odorant-binding protein (OBP) genes in the genome of Drosophila melanogaster. Some of these genes are present in large clusters in the genome. Most members are expressed in various taste organs, including gustatory sensilla in the labellum, the pharyngeal labral sense organ, dorsal and ventral cibarial organs, as well as taste bristles located on the wings and tarsi. Some of the gustatory OBPs are expressed exclusively in taste organs, but most are expressed in both olfactory and gustatory sensilla. Multiple binding proteins can be coexpressed in the same gustatory sensillum. Cells in the tarsi that express OBPs are required for normal chemosensation mediated through the leg, as ablation of these cells dramatically reduces the sensitivity of the proboscis extension reflex to sucrose. Finally, we show that OBP genes expressed in the pharyngeal taste sensilla are still expressed in the poxneuro genetic background while OBPs expressed in the labellum are not. These findings support a broad role for members of the OBP family in gustation and olfaction and suggest that poxneuro is required for cell fate determination of labellar but not pharyngeal taste organs.

Full Text

The Full Text of this article is available as a PDF (322K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Karess RE, Rubin GM. Analysis of P transposable element functions in Drosophila. Cell. 1984 Aug;38(1):135–146. [PubMed]
  • Kim MS, Repp A, Smith DP. LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics. 1998 Oct;150(2):711–721. [PMC free article] [PubMed]
  • Leal WS, Nikonova L, Peng G. Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett. 1999 Dec 24;464(1-2):85–90. [PubMed]
  • Mount SM, Burks C, Hertz G, Stormo GD, White O, Fields C. Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res. 1992 Aug 25;20(16):4255–4262. [PMC free article] [PubMed]
  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. [PubMed]
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. [PubMed]
  • Nottebohm E, Usui A, Therianos S, Kimura K, Dambly-Chaudière C, Ghysen A. The gene poxn controls different steps of the formation of chemosensory organs in Drosophila. Neuron. 1994 Jan;12(1):25–34. [PubMed]
  • Bianchet MA, Bains G, Pelosi P, Pevsner J, Snyder SH, Monaco HL, Amzel LM. The three-dimensional structure of bovine odorant binding protein and its mechanism of odor recognition. Nat Struct Biol. 1996 Nov;3(11):934–939. [PubMed]
  • Park SK, Shanbhag SR, Wang Q, Hasan G, Steinbrecht RA, Pikielny CW. Expression patterns of two putative odorant-binding proteins in the olfactory organs of Drosophila melanogaster have different implications for their functions. Cell Tissue Res. 2000 Apr;300(1):181–192. [PubMed]
  • Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991 Apr 5;65(1):175–187. [PubMed]
  • Pelosi P. Perireceptor events in olfaction. J Neurobiol. 1996 May;30(1):3–19. [PubMed]
  • Cavener DR. Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res. 1987 Feb 25;15(4):1353–1361. [PMC free article] [PubMed]
  • Pikielny CW, Hasan G, Rouyer F, Rosbash M. Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron. 1994 Jan;12(1):35–49. [PubMed]
  • Chen P, Nordstrom W, Gish B, Abrams JM. grim, a novel cell death gene in Drosophila. Genes Dev. 1996 Jul 15;10(14):1773–1782. [PubMed]
  • Pirrotta V. Vectors for P-mediated transformation in Drosophila. Biotechnology. 1988;10:437–456. [PubMed]
  • Clyne P, Grant A, O'Connell R, Carlson JR. Odorant response of individual sensilla on the Drosophila antenna. Invert Neurosci. 1997 Sep-Dec;3(2-3):127–135. [PubMed]
  • Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron. 1999 Feb;22(2):327–338. [PubMed]
  • Sandler BH, Nikonova L, Leal WS, Clardy J. Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol. 2000 Feb;7(2):143–151. [PubMed]
  • de Bruyne M, Foster K, Carlson JR. Odor coding in the Drosophila antenna. Neuron. 2001 May;30(2):537–552. [PubMed]
  • Scaloni A, Monti M, Angeli S, Pelosi P. Structural analysis and disulfide-bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem Biophys Res Commun. 1999 Dec 20;266(2):386–391. [PubMed]
  • Du G, Prestwich GD. Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry. 1995 Jul 11;34(27):8726–8732. [PubMed]
  • Scott K, Brady R, Jr, Cravchik A, Morozov P, Rzhetsky A, Zuker C, Axel R. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell. 2001 Mar 9;104(5):661–673. [PubMed]
  • Gao Q, Yuan B, Chess A. Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nat Neurosci. 2000 Aug;3(8):780–785. [PubMed]
  • Ghysen A, Dambly-Chaudière C. The specification of sensory neuron identity in Drosophila. Bioessays. 1993 May;15(5):293–298. [PubMed]
  • Hekmat-Scafe DS, Steinbrecht RA, Carlson JR. Coexpression of two odorant-binding protein homologs in Drosophila: implications for olfactory coding. J Neurosci. 1997 Mar 1;17(5):1616–1624. [PubMed]
  • Hekmat-Scafe DS, Dorit RL, Carlson JR. Molecular evolution of odorant-binding protein genes OS-E and OS-F in Drosophila. Genetics. 2000 May;155(1):117–127. [PMC free article] [PubMed]
  • Smith DP, Ranganathan R, Hardy RW, Marx J, Tsuchida T, Zuker CS. Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein kinase C. Science. 1991 Dec 6;254(5037):1478–1484. [PubMed]
  • Hildebrand JG, Shepherd GM. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci. 1997;20:595–631. [PubMed]
  • Stamnes MA, Shieh BH, Chuman L, Harris GL, Zuker CS. The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell. 1991 Apr 19;65(2):219–227. [PubMed]
  • Kaissling KE. Olfactory perireceptor and receptor events in moths: a kinetic model. Chem Senses. 2001 Feb;26(2):125–150. [PubMed]
  • Vosshall LB, Wong AM, Axel R. An olfactory sensory map in the fly brain. Cell. 2000 Jul 21;102(2):147–159. [PubMed]
  • Wang Q, Hasan G, Pikielny CW. Preferential expression of biotransformation enzymes in the olfactory organs of Drosophila melanogaster, the antennae. J Biol Chem. 1999 Apr 9;274(15):10309–10315. [PubMed]
  • Troemel ER, Chou JH, Dwyer ND, Colbert HA, Bargmann CI. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell. 1995 Oct 20;83(2):207–218. [PubMed]
  • Wang Y, Wright NJ, Guo H, Xie Z, Svoboda K, Malinow R, Smith DP, Zhong Y. Genetic manipulation of the odor-evoked distributed neural activity in the Drosophila mushroom body. Neuron. 2001 Jan;29(1):267–276. [PubMed]
  • Vassar R, Chao SK, Sitcheran R, Nuñez JM, Vosshall LB, Axel R. Topographic organization of sensory projections to the olfactory bulb. Cell. 1994 Dec 16;79(6):981–991. [PubMed]
  • Vogt RG, Riddiford LM. Pheromone binding and inactivation by moth antennae. Nature. 1981 Sep 10;293(5828):161–163. [PubMed]
  • Wing J, Zhou L, Schwartz L, Nambu J. Distinct cell killing properties of the Drosophila reaper, head involution defective, and grim genes. Cell Death Differ. 1999 Feb;6(2):212–213. [PubMed]
  • Wojtasek H, Leal WS. Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J Biol Chem. 1999 Oct 22;274(43):30950–30956. [PubMed]
  • Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell. 1999 Mar 5;96(5):725–736. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...