• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Sep 2001; 159(1): 201–210.
PMCID: PMC1461781

The functional impact of Pgm amino acid polymorphism on glycogen content in Drosophila melanogaster.

Abstract

Earlier studies of the common PGM allozymes in Drosophila melanogaster reported no in vitro activity differences. However, our study of nucleotide variation observed that PGM allozymes are a heterogeneous mixture of amino acid polymorphisms. In this study, we analyze 10 PGM protein haplotypes with respect to PGM activity, thermostability, and adult glycogen content. We find a twofold difference in activity among PGM protein haplotypes that is associated with a threefold difference in glycogen content. The latitudinal clines for several Pgm amino acid polymorphisms show that high PGM activity, and apparently higher flux to glycogen synthesis, parallel the low activity clines at G6PD for reduced pentose shunt flux in northern latitudes. This suggests that amino acid polymorphism is under selection at this branch point and may be favored for increased metabolic storage associated with stress resistance and adaptation to temperate regions.

Full Text

The Full Text of this article is available as a PDF (191K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Argos P, Rossman MG, Grau UM, Zuber H, Frank G, Tratschin JD. Thermal stability and protein structure. Biochemistry. 1979 Dec 11;18(25):5698–5703. [PubMed]
  • Burkhart BD, Montgomery E, Langley CH, Voelker RA. Characterization of Allozyme Null and Low Activity Alleles from Two Natural Populations of DROSOPHILA MELANOGASTER. Genetics. 1984 Jun;107(2):295–306. [PMC free article] [PubMed]
  • Carfagna M, Fucci L, Gaudio L, Pontecorvo G, Rubino R. Adaptive value of PGM polymorphism in laboratory populations of Drosophila melanogaster. Genet Res. 1980 Dec;36(3):265–276. [PubMed]
  • Carter PA, Watt WB. Adaptation at specific loci. V. Metabolically adjacent enzyme loci may have very distinct experiences of selective pressures. Genetics. 1988 Aug;119(4):913–924. [PMC free article] [PubMed]
  • Hoffmann RJ. Properties of allelic variants of phosphoglucomutase from the sea anemone Metridium senile. Biochem Genet. 1985 Dec;23(11-12):859–876. [PubMed]
  • Kacser H, Burns JA. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed]
  • Clark AG. Causes and consequences of variation in energy storage in Drosophila melanogaster. Genetics. 1989 Sep;123(1):131–144. [PMC free article] [PubMed]
  • Keightley PD. Models of quantitative variation of flux in metabolic pathways. Genetics. 1989 Apr;121(4):869–876. [PMC free article] [PubMed]
  • Keightley PD, Kacser H. Dominance, pleiotropy and metabolic structure. Genetics. 1987 Oct;117(2):319–329. [PMC free article] [PubMed]
  • Connors EM, Curtsinger JW. Relationship between alpha-glycerophosphate dehydrogenase activity and metabolic rate during flight in Drosophila melanogaster. Biochem Genet. 1986 Apr;24(3-4):245–257. [PubMed]
  • Kirby DA, Muse SV, Stephan W. Maintenance of pre-mRNA secondary structure by epistatic selection. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9047–9051. [PMC free article] [PubMed]
  • Crawford DL, Powers DA. Evolutionary adaptation to different thermal environments via transcriptional regulation. Mol Biol Evol. 1992 Sep;9(5):806–813. [PubMed]
  • Dahlhoff EP, Rank NE. Functional and physiological consequences of genetic variation at phosphoglucose isomerase: heat shock protein expression is related to enzyme genotype in a montane beetle. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10056–10061. [PMC free article] [PubMed]
  • Koehn RK, Newell RI, Immermann F. Maintenance of an aminopeptidase allele frequency cline by natural selection. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5385–5389. [PMC free article] [PubMed]
  • Dai JB, Liu Y, Ray WJ, Jr, Konno M. The crystal structure of muscle phosphoglucomutase refined at 2.7-angstrom resolution. J Biol Chem. 1992 Mar 25;267(9):6322–6337. [PubMed]
  • Kuhlman B, Baker D. Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10383–10388. [PMC free article] [PubMed]
  • Dill KA. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. [PubMed]
  • Labate J, Eanes WF. Direct measurement of in vivo flux differences between electrophoretic variants of G6PD from Drosophila melanogaster. Genetics. 1992 Nov;132(3):783–787. [PMC free article] [PubMed]
  • Langley CH, Voelker RA, Brown AJ, Ohnishi S, Dickson B, Montgomery E. Null allele frequencies at allozyme loci in natural populations of Drosophila melanogaster. Genetics. 1981 Sep;99(1):151–156. [PMC free article] [PubMed]
  • Dykhuizen DE, Dean AM, Hartl DL. Metabolic flux and fitness. Genetics. 1987 Jan;115(1):25–31. [PMC free article] [PubMed]
  • LaPorte DC, Walsh K, Koshland DE., Jr The branch point effect. Ultrasensitivity and subsensitivity to metabolic control. J Biol Chem. 1984 Nov 25;259(22):14068–14075. [PubMed]
  • Eanes WF, Hey J. IN VIVO Function of Rare G6pd Variants from Natural Populations of DROSOPHILA MELANOGASTER. Genetics. 1986 Jul;113(3):679–693. [PMC free article] [PubMed]
  • Laurie-Ahlberg CC, Maroni G, Bewley GC, Lucchesi JC, Weir BS. Quantitative genetic variation of enzyme activities in natural populations of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1073–1077. [PMC free article] [PubMed]
  • Laurie-Ahlberg CC, Barnes PT, Curtsinger JW, Emigh TH, Karlin B, Morris R, Norman RA, Wilton AN. Genetic variability of flight metabolism in Drosophila melanogaster. II. Relationship between power output and enzyme activity levels. Genetics. 1985 Dec;111(4):845–868. [PMC free article] [PubMed]
  • Freriksen A, Seykens D, Scharloo W, Heinstra PW. Alcohol dehydrogenase controls the flux from ethanol into lipids in Drosophila larvae. A 13C NMR study. J Biol Chem. 1991 Nov 15;266(32):21399–21403. [PubMed]
  • Lehmann FO. Ambient temperature affects free-flight performance in the fruit fly Drosophila melanogaster. J Comp Physiol B. 1999 Apr;169(3):165–171. [PubMed]
  • Freriksen A, de Ruiter BL, Scharloo W, Heinstra PW. Drosophila alcohol dehydrogenase polymorphism and carbon-13 fluxes: opportunities for epistasis and natural selection. Genetics. 1994 Aug;137(4):1071–1078. [PMC free article] [PubMed]
  • Brown AJ. Physiological correlates of an enzyme polymorphism. Nature. 1977 Oct 27;269(5631):803–804. [PubMed]
  • Fucci L, Gaudio L, Rao R, Spanò A, Carfagna M. Properties of the two common electrophoretic variants of phosphoglucomutase in Drosophila melanogaster. Biochem Genet. 1979 Oct;17(9-10):825–836. [PubMed]
  • Guedon E, Desvaux M, Petitdemange H. Kinetic analysis of Clostridium cellulolyticum carbohydrate metabolism: importance of glucose 1-phosphate and glucose 6-phosphate branch points for distribution of carbon fluxes inside and outside cells as revealed by steady-state continuous culture. J Bacteriol. 2000 Apr;182(7):2010–2017. [PMC free article] [PubMed]
  • Menéndez-Arias L, Argos P. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha-helices. J Mol Biol. 1989 Mar 20;206(2):397–406. [PubMed]
  • Middleton RJ, Kacser H. Enzyme variation, metabolic flux and fitness: alcohol dehydrogenase in Drosophila melanogaster. Genetics. 1983 Nov;105(3):633–650. [PMC free article] [PubMed]
  • Hanson KR, McHale NA. A Starchless Mutant of Nicotiana sylvestris Containing a Modified Plastid Phosphoglucomutase. Plant Physiol. 1988 Nov;88(3):838–844. [PMC free article] [PubMed]
  • Oakeshott JG, Chambers GK, Gibson JB, Willcocks DA. Latitudinal relationships of esterase-6 and phosphoglucomutase gene frequencies in Drosophila melanogaster. Heredity (Edinb) 1981 Dec;47(Pt 3):385–396. [PubMed]
  • Hartl DL, Dykhuizen DE, Dean AM. Limits of adaptation: the evolution of selective neutrality. Genetics. 1985 Nov;111(3):655–674. [PMC free article] [PubMed]
  • Oakeshott JG, Chambers GK, Gibson JB, Eanes WF, Willcocks DA. Geographic variation in G6pd and Pgd allele frequencies in Drosophila melanogaster. Heredity (Edinb) 1983 Feb;50(Pt 1):67–72. [PubMed]
  • O'Doherty RM, Lehman DL, Seoane J, Gómez-Foix AM, Guinovart JJ, Newgard CB. Differential metabolic effects of adenovirus-mediated glucokinase and hexokinase I overexpression in rat primary hepatocytes. J Biol Chem. 1996 Aug 23;271(34):20524–20530. [PubMed]
  • Parsch J, Tanda S, Stephan W. Site-directed mutations reveal long-range compensatory interactions in the Adh gene of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):928–933. [PMC free article] [PubMed]
  • Trinh KY, O'Doherty RM, Anderson P, Lange AJ, Newgard CB. Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats. J Biol Chem. 1998 Nov 20;273(47):31615–31620. [PubMed]
  • Verrelli BC, Eanes WF. Extensive amino acid polymorphism at the pgm locus is consistent with adaptive protein evolution in Drosophila melanogaster. Genetics. 2000 Dec;156(4):1737–1752. [PMC free article] [PubMed]
  • Pogson GH. Expression of overdominance for specific activity at the phosphoglucomutase-2 locus in the Pacific oyster, Crassostrea gigas. Genetics. 1991 May;128(1):133–141. [PMC free article] [PubMed]
  • Verrelli BC, Eanes WF. Clinal variation for amino acid polymorphisms at the Pgm locus in Drosophila melanogaster. Genetics. 2001 Apr;157(4):1649–1663. [PMC free article] [PubMed]
  • Pontecorvo G, Carfagna M, Fucci L, Gaudio L. Effects of various metabolites on two phosphoglucomutase allozyme activities from Drosophila melanogaster. Biochem Genet. 1986 Jun;24(5-6):397–403. [PubMed]
  • Watt WB. Adaptation at Specific Loci. II. Demographic and Biochemical Elements in the Maintenance of the Colias Pgi Polymorphism. Genetics. 1983 Apr;103(4):691–724. [PMC free article] [PubMed]
  • Powers DA, Lauerman T, Crawford D, DiMichele L. Genetic mechanisms for adapting to a changing environment. Annu Rev Genet. 1991;25:629–659. [PubMed]
  • Watt WB. Allozymes in evolutionary genetics: self-imposed burden or extraordinary tool? Genetics. 1994 Jan;136(1):11–16. [PMC free article] [PubMed]
  • Watt WB, Cassin RC, Swan MS. Adaptation at Specific Loci. III. Field Behavior and Survivorship Differences among Colias Pgi Genotypes Are Predictable from IN VITRO Biochemistry. Genetics. 1983 Apr;103(4):725–739. [PMC free article] [PubMed]
  • Watt WB, Carter PA, Blower SM. Adaptation at specific loci. IV. Differential mating success among glycolytic allozyme genotypes of Colias butterflies. Genetics. 1985 Jan;109(1):157–175. [PMC free article] [PubMed]
  • Segal JA, Barnett JL, Crawford DL. Functional analyses of natural variation in Sp1 binding sites of a TATA-less promoter. J Mol Evol. 1999 Dec;49(6):736–749. [PubMed]
  • Whitehouse DB, Tomkins J, Lovegrove JU, Hopkinson DA, McMillan WO. A phylogenetic approach to the identification of phosphoglucomutase genes. Mol Biol Evol. 1998 Apr;15(4):456–462. [PubMed]
  • Spiller B, Gershenson A, Arnold FH, Stevens RC. A structural view of evolutionary divergence. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12305–12310. [PMC free article] [PubMed]
  • Závodszky P, Kardos J, Svingor, Petsko GA. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7406–7411. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • Gene
    Gene
    Gene links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • MedGen
    MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links
  • Taxonomy
    Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...