• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Aug 2001; 158(4): 1711–1724.
PMCID: PMC1461754

Bacterial artificial chromosome-based physical map of the rice genome constructed by restriction fingerprint analysis.

Abstract

Genome-wide physical mapping with bacteria-based large-insert clones (e.g., BACs, PACs, and PBCs) promises to revolutionize genomics of large, complex genomes. To accelerate rice and other grass species genome research, we developed a genome-wide BAC-based map of the rice genome. The map consists of 298 BAC contigs and covers 419 Mb of the 430-Mb rice genome. Subsequent analysis indicated that the contigs constituting the map are accurate and reliable. Particularly important to proficiency were (1) a high-resolution, high-throughput DNA sequencing gel-based electrophoretic method for BAC fingerprinting, (2) the use of several complementary large-insert BAC libraries, and (3) computer-aided contig assembly. It has been demonstrated that the fingerprinting method is not significantly influenced by repeated sequences, genome size, and genome complexity. Use of several complementary libraries developed with different restriction enzymes minimized the "gaps" in the physical map. In contrast to previous estimates, a clonal coverage of 6.0-8.0 genome equivalents seems to be sufficient for development of a genome-wide physical map of approximately 95% genome coverage. This study indicates that genome-wide BAC-based physical maps can be developed quickly and economically for a variety of plant and animal species by restriction fingerprint analysis via DNA sequencing gel-based electrophoresis.

Full Text

The Full Text of this article is available as a PDF (347K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ahn S, Tanksley SD. Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7980–7984. [PMC free article] [PubMed]
  • Ahn S, Anderson JA, Sorrells ME, Tanksley SD. Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet. 1993 Dec;241(5-6):483–490. [PubMed]
  • Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):796–815. [PubMed]
  • Marra MA, Kucaba TA, Dietrich NL, Green ED, Brownstein B, Wilson RK, McDonald KM, Hillier LW, McPherson JD, Waterston RH. High throughput fingerprint analysis of large-insert clones. Genome Res. 1997 Nov;7(11):1072–1084. [PMC free article] [PubMed]
  • Marra M, Kucaba T, Sekhon M, Hillier L, Martienssen R, Chinwalla A, Crockett J, Fedele J, Grover H, Gund C, et al. zA map for sequence analysis of the Arabidopsis thaliana genome. Nat Genet. 1999 Jul;22(3):265–270. [PubMed]
  • Moore G, Devos KM, Wang Z, Gale MD. Cereal genome evolution. Grasses, line up and form a circle. Curr Biol. 1995 Jul 1;5(7):737–739. [PubMed]
  • Mozo T, Fischer S, Meier-Ewert S, Lehrach H, Altmann T. Use of the IGF BAC library for physical mapping of the Arabidopsis thaliana genome. Plant J. 1998 Nov;16(3):377–384. [PubMed]
  • Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SE, et al. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics. 1994 Dec;138(4):1251–1274. [PMC free article] [PubMed]
  • Mozo T, Dewar K, Dunn P, Ecker JR, Fischer S, Kloska S, Lehrach H, Marra M, Martienssen R, Meier-Ewert S, et al. A complete BAC-based physical map of the Arabidopsis thaliana genome. Nat Genet. 1999 Jul;22(3):271–275. [PubMed]
  • Olson MV, Dutchik JE, Graham MY, Brodeur GM, Helms C, Frank M, MacCollin M, Scheinman R, Frank T. Random-clone strategy for genomic restriction mapping in yeast. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7826–7830. [PMC free article] [PubMed]
  • Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SR, Liu SC, Stansel JW, Irvine JE. Convergent domestication of cereal crops by independent mutations at corresponding genetic Loci. Science. 1995 Sep 22;269(5231):1714–1718. [PubMed]
  • Coulson A, Sulston J, Brenner S, Karn J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7821–7825. [PMC free article] [PubMed]
  • Riles L, Dutchik JE, Baktha A, McCauley BK, Thayer EC, Leckie MP, Braden VV, Depke JE, Olson MV. Physical maps of the six smallest chromosomes of Saccharomyces cerevisiae at a resolution of 2.6 kilobase pairs. Genetics. 1993 May;134(1):81–150. [PMC free article] [PubMed]
  • Devos KM, Gale MD. Comparative genetics in the grasses. Plant Mol Biol. 1997 Sep;35(1-2):3–15. [PubMed]
  • Devos KM, Gale MD. Genome relationships: the grass model in current research. Plant Cell. 2000 May;12(5):637–646. [PMC free article] [PubMed]
  • Saji S, Umehara Y, Antonio BA, Yamane H, Tanoue H, Baba T, Aoki H, Ishige N, Wu J, Koike K, et al. A physical map with yeast artificial chromosome (YAC) clones covering 63% of the 12 rice chromosomes. Genome. 2001 Feb;44(1):32–37. [PubMed]
  • Ding Y, Johnson MD, Colayco R, Chen YJ, Melnyk J, Schmitt H, Shizuya H. Contig assembly of bacterial artificial chromosome clones through multiplexed fluorescence-labeled fingerprinting. Genomics. 1999 Mar 15;56(3):237–246. [PubMed]
  • Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8794–8797. [PMC free article] [PubMed]
  • Soderlund C, Longden I, Mott R. FPC: a system for building contigs from restriction fingerprinted clones. Comput Appl Biosci. 1997 Oct;13(5):523–535. [PubMed]
  • Sulston J, Mallett F, Staden R, Durbin R, Horsnell T, Coulson A. Software for genome mapping by fingerprinting techniques. Comput Appl Biosci. 1988 Mar;4(1):125–132. [PubMed]
  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, et al. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics. 1998 Jan;148(1):479–494. [PMC free article] [PubMed]
  • Tao Q, Zhang HB. Cloning and stable maintenance of DNA fragments over 300 kb in Escherichia coli with conventional plasmid-based vectors. Nucleic Acids Res. 1998 Nov 1;26(21):4901–4909. [PMC free article] [PubMed]
  • Venter JC, Smith HO, Hood L. A new strategy for genome sequencing. Nature. 1996 May 30;381(6581):364–366. [PubMed]
  • Hoskins RA, Nelson CR, Berman BP, Laverty TR, George RA, Ciesiolka L, Naeemuddin M, Arenson AD, Durbin J, David RG, et al. A BAC-based physical map of the major autosomes of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2271–2274. [PubMed]
  • Zhang HB, Wing RA. Physical mapping of the rice genome with BACs. Plant Mol Biol. 1997 Sep;35(1-2):115–127. [PubMed]
  • Ioannou PA, Amemiya CT, Garnes J, Kroisel PM, Shizuya H, Chen C, Batzer MA, de Jong PJ. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet. 1994 Jan;6(1):84–89. [PubMed]
  • Kelkar HS, Griffith J, Case ME, Covert SF, Hall RD, Keith CH, Oliver JS, Orbach MJ, Sachs MS, Wagner JR, et al. The Neurospora crassa genome: cosmid libraries sorted by chromosome. Genetics. 2001 Mar;157(3):979–990. [PMC free article] [PubMed]
  • Kim UJ, Birren BW, Slepak T, Mancino V, Boysen C, Kang HL, Simon MI, Shizuya H. Construction and characterization of a human bacterial artificial chromosome library. Genomics. 1996 Jun 1;34(2):213–218. [PubMed]
  • Zhu H, Blackmon BP, Sasinowski M, Dean RA. Physical map and organization of chromosome 7 in the rice blast fungus, Magnaporthe grisea. Genome Res. 1999 Aug;9(8):739–750. [PMC free article] [PubMed]
  • Lin X, Kaul S, Rounsley S, Shea TP, Benito MI, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M, et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):761–768. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...