• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Dec 2000; 156(4): 1913–1931.
PMCID: PMC1461354

The population genetics of the origin and divergence of the Drosophila simulans complex species.

Abstract

The origins and divergence of Drosophila simulans and close relatives D. mauritiana and D. sechellia were examined using the patterns of DNA sequence variation found within and between species at 14 different genes. D. sechellia consistently revealed low levels of polymorphism, and genes from D. sechellia have accumulated mutations at a rate that is approximately 50% higher than the same genes from D. simulans. At synonymous sites, D. sechellia has experienced a significant excess of unpreferred codon substitutions. Together these observations suggest that D. sechellia has had a reduced effective population size for some time, and that it is accumulating slightly deleterious mutations as a result. D. simulans and D. mauritiana are both highly polymorphic and the two species share many polymorphisms, probably since the time of common ancestry. A simple isolation speciation model, with zero gene flow following incipient species separation, was fitted to both the simulans/mauritiana divergence and the simulans/sechellia divergence. In both cases the model fit the data quite well, and the analyses revealed little evidence of gene flow between the species. The exception is one gene copy at one locus in D. sechellia, which closely resembled other D. simulans sequences. The overall picture is of two allopatric speciation events that occurred quite near one another in time.

Full Text

The Full Text of this article is available as a PDF (328K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aguadé M, Miyashita N, Langley CH. Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila. Genetics. 1992 Nov;132(3):755–770. [PMC free article] [PubMed]
  • Akashi H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics. 1994 Mar;136(3):927–935. [PMC free article] [PubMed]
  • Akashi H. Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. Genetics. 1995 Feb;139(2):1067–1076. [PMC free article] [PubMed]
  • Andolfatto P, Wall JD, Kreitman M. Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. Genetics. 1999 Nov;153(3):1297–1311. [PMC free article] [PubMed]
  • Barraclough TG, Vogler AP. Detecting the Geographical Pattern of Speciation from Species-Level Phylogenies. Am Nat. 2000 Apr;155(4):419–434. [PubMed]
  • Begun DJ, Aquadro CF. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. [PubMed]
  • Berry AJ, Ajioka JW, Kreitman M. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics. 1991 Dec;129(4):1111–1117. [PMC free article] [PubMed]
  • Hey J. The neutralist, the fly and the selectionist. Trends Ecol Evol. 1999 Jan;14(1):35–38. [PubMed]
  • Hey J, Kliman RM. Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Mol Biol Evol. 1993 Jul;10(4):804–822. [PubMed]
  • Caccone A, Amato GD, Powell JR. Rates and patterns of scnDNA and mtDNA divergence within the Drosophila melanogaster subgroup. Genetics. 1988 Apr;118(4):671–683. [PMC free article] [PubMed]
  • Hey J, Wakeley J. A coalescent estimator of the population recombination rate. Genetics. 1997 Mar;145(3):833–846. [PMC free article] [PubMed]
  • Caccone A, Moriyama EN, Gleason JM, Nigro L, Powell JR. A molecular phylogeny for the Drosophila melanogaster subgroup and the problem of polymorphism data. Mol Biol Evol. 1996 Nov;13(9):1224–1232. [PubMed]
  • Hilton H, Hey J. DNA sequence variation at the period locus reveals the history of species and speciation events in the Drosophila virilis group. Genetics. 1996 Nov;144(3):1015–1025. [PMC free article] [PubMed]
  • Cariou ML. Biochemical phylogeny of the eight species in the Drosophila melanogaster subgroup, including D. sechellia and D. orena. Genet Res. 1987 Dec;50(3):181–185. [PubMed]
  • Cariou ML, Solignac M, Monnerot M, David JR. Low allozyme and mtDNA variability in the island endemic species Drosophila sechellia (D. melanogaster complex). Experientia. 1990 Jan 15;46(1):101–104. [PubMed]
  • Charlesworth B, Morgan MT, Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. [PMC free article] [PubMed]
  • Hudson RR. Estimating the recombination parameter of a finite population model without selection. Genet Res. 1987 Dec;50(3):245–250. [PubMed]
  • Clark AG. Neutral behavior of shared polymorphism. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7730–7734. [PMC free article] [PubMed]
  • Cohn VH, Thompson MA, Moore GP. Nucleotide sequence comparison of the Adh gene in three drosophilids. J Mol Evol. 1984;20(1):31–37. [PubMed]
  • Hudson RR, Kreitman M, Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. [PMC free article] [PubMed]
  • Cooke PH, Oakeshott JG. Amino acid polymorphisms for esterase-6 in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1426–1430. [PMC free article] [PubMed]
  • Coyne JA. Genetics of sexual isolation in females of the Drosophila simulans species complex. Genet Res. 1992 Aug;60(1):25–31. [PubMed]
  • Coyne JA, Charlesworth B. Genetics of a pheromonal difference affecting sexual isolation between Drosophila mauritiana and D. sechellia. Genetics. 1997 Apr;145(4):1015–1030. [PMC free article] [PubMed]
  • Karotam J, Delves AC, Oakeshott JG. Conservation and change in structural and 5' flanking sequences of esterase 6 in sibling Drosophila species. Genetica. 1993;88(1):11–28. [PubMed]
  • Kliman RM, Hey J. DNA sequence variation at the period locus within and among species of the Drosophila melanogaster complex. Genetics. 1993 Feb;133(2):375–387. [PMC free article] [PubMed]
  • Coyne JA, Crittenden AP, Mah K. Genetics of a pheromonal difference contributing to reproductive isolation in Drosophila. Science. 1994 Sep 2;265(5177):1461–1464. [PubMed]
  • Da Lage JL, Renard E, Chartois F, Lemeunier F, Cariou ML. Amyrel, a paralogous gene of the amylase gene family in Drosophila melanogaster and the Sophophora subgenus. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6848–6853. [PMC free article] [PubMed]
  • Kreitman M. The neutral theory is dead. Long live the neutral theory. Bioessays. 1996 Aug;18(8):678–683. [PubMed]
  • Dobzhansky T. Studies on Hybrid Sterility. II. Localization of Sterility Factors in Drosophila Pseudoobscura Hybrids. Genetics. 1936 Mar;21(2):113–135. [PMC free article] [PubMed]
  • Leicht BG, Muse SV, Hanczyc M, Clark AG. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila. Genetics. 1995 Jan;139(1):299–308. [PMC free article] [PubMed]
  • Duret L, Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4482–4487. [PMC free article] [PubMed]
  • Lemeunier F, Ashburner MA. Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora). II. Phylogenetic relationships between six species based upon polytene chromosome banding sequences. Proc R Soc Lond B Biol Sci. 1976 May 18;193(1112):275–294. [PubMed]
  • Eanes WF, Kirchner M, Yoon J. Evidence for adaptive evolution of the G6pd gene in the Drosophila melanogaster and Drosophila simulans lineages. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7475–7479. [PMC free article] [PubMed]
  • Smith JM, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed]
  • Eanes WF, Kirchner M, Yoon J, Biermann CH, Wang IN, McCartney MA, Verrelli BC. Historical selection, amino acid polymorphism and lineage-specific divergence at the G6pd locus in Drosophila melanogaster and D. simulans. Genetics. 1996 Nov;144(3):1027–1041. [PMC free article] [PubMed]
  • McAllister BF, Charlesworth B. Reduced sequence variability on the Neo-Y chromosome of Drosophila americana americana. Genetics. 1999 Sep;153(1):221–233. [PMC free article] [PubMed]
  • McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. [PubMed]
  • Moriyama EN, Powell JR. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. [PubMed]
  • Tajima F. The effect of change in population size on DNA polymorphism. Genetics. 1989 Nov;123(3):597–601. [PMC free article] [PubMed]
  • Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. [PMC free article] [PubMed]
  • Takahata N. An attempt to estimate the effective size of the ancestral species common to two extant species from which homologous genes are sequenced. Genet Res. 1986 Dec;48(3):187–190. [PubMed]
  • Palopoli MF, Davis AW, Wu CI. Discord between the phylogenies inferred from molecular versus functional data: uneven rates of functional evolution or low levels of gene flow? Genetics. 1996 Nov;144(3):1321–1328. [PMC free article] [PubMed]
  • Price CS. Conspecific sperm precedence in Drosophila. Nature. 1997 Aug 14;388(6643):663–666. [PubMed]
  • Ting CT, Tsaur SC, Wu CI. The phylogeny of closely related species as revealed by the genealogy of a speciation gene, Odysseus. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5313–5316. [PMC free article] [PubMed]
  • Price CS, Dyer KA, Coyne JA. Sperm competition between Drosophila males involves both displacement and incapacitation. Nature. 1999 Jul 29;400(6743):449–452. [PubMed]
  • Ramos-Onsins S, Aguadé M. Molecular evolution of the Cecropin multigene family in Drosophila. functional genes vs. pseudogenes. Genetics. 1998 Sep;150(1):157–171. [PMC free article] [PubMed]
  • Wakeley J. The variance of pairwise nucleotide differences in two populations with migration. Theor Popul Biol. 1996 Feb;49(1):39–57. [PubMed]
  • Wakeley J, Hey J. Estimating ancestral population parameters. Genetics. 1997 Mar;145(3):847–855. [PMC free article] [PubMed]
  • R'Kha S, Capy P, David JR. Host-plant specialization in the Drosophila melanogaster species complex: a physiological, behavioral, and genetical analysis. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1835–1839. [PMC free article] [PubMed]
  • Wang RL, Wakeley J, Hey J. Gene flow and natural selection in the origin of Drosophila pseudoobscura and close relatives. Genetics. 1997 Nov;147(3):1091–1106. [PMC free article] [PubMed]
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. [PubMed]
  • Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Wright F. The 'effective number of codons' used in a gene. Gene. 1990 Mar 1;87(1):23–29. [PubMed]
  • Satta Y, Takahata N. Evolution of Drosophila mitochondrial DNA and the history of the melanogaster subgroup. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9558–9562. [PMC free article] [PubMed]
  • Wu CI, Li WH. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. [PMC free article] [PubMed]
  • Schliewen UK, Tautz D, Päbo S. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature. 1994 Apr 14;368(6472):629–632. [PubMed]
  • Yanicostas C, Vincent A, Lepesant JA. Transcriptional and posttranscriptional regulation contributes to the sex-regulated expression of two sequence-related genes at the janus locus of Drosophila melanogaster. Mol Cell Biol. 1989 Jun;9(6):2526–2535. [PMC free article] [PubMed]
  • Shibata H, Yamazaki T. Molecular evolution of the duplicated Amy locus in the Drosophila melanogaster species subgroup: concerted evolution only in the coding region and an excess of nonsynonymous substitutions in speciation. Genetics. 1995 Sep;141(1):223–236. [PMC free article] [PubMed]
  • Zurovcova M, Eanes WF. Lack of nucleotide polymorphism in the Y-linked sperm flagellar dynein gene Dhc-Yh3 of Drosophila melanogaster and D. simulans. Genetics. 1999 Dec;153(4):1709–1715. [PMC free article] [PubMed]
  • Snook RR, Markow TA, Karr TL. Functional nonequivalence of sperm in Drosophila pseudoobscura. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11222–11226. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...