Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. 2000 Dec; 156(4): 1661–1669.
PMCID: PMC1461346

Transposons but not retrotransposons are located preferentially in regions of high recombination rate in Caenorhabditis elegans.

Abstract

We analyzed the distribution of transposable elements (TEs: transposons, LTR retrotransposons, and non-LTR retrotransposons) in the chromosomes of the nematode Caenorhabditis elegans. The density of transposons (DNA-based elements) along the chromosomes was found to be positively correlated with recombination rate, but this relationship was not observed for LTR or non-LTR retrotransposons (RNA-based elements). Gene (coding region) density is higher in regions of low recombination rate. However, the lower TE density in these regions is not due to the counterselection of TE insertions within exons since the same positive correlation between TE density and recombination rate was found in noncoding regions (both in introns and intergenic DNA). These data are not compatible with a global model of selection acting against TE insertions, for which an accumulation of elements in regions of reduced recombination is expected. We also found no evidence for a stronger selection against TE insertions on the X chromosome compared to the autosomes. The difference in distribution of the DNA and RNA-based elements along the chromosomes in relation to recombination rate can be explained by differences in the transposition processes.

Full Text

The Full Text of this article is available as a PDF (194K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bachtrog D, Weiss S, Zangerl B, Brem G, Schlötterer C. Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. Mol Biol Evol. 1999 May;16(5):602–610. [PubMed]
  • Barnes TM, Kohara Y, Coulson A, Hekimi S. Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics. 1995 Sep;141(1):159–179. [PMC free article] [PubMed]
  • Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BF, Rapp BA, Wheeler DL. GenBank. Nucleic Acids Res. 1999 Jan 1;27(1):12–17. [PMC free article] [PubMed]
  • Biémont C. Population genetics of transposable DNA elements. A Drosophila point of view. Genetica. 1992;86(1-3):67–84. [PubMed]
  • Biémont C, Tsitrone A, Vieira C, Hoogland C. Transposable element distribution in Drosophila. Genetics. 1997 Dec;147(4):1997–1999. [PMC free article] [PubMed]
  • Britten RJ. Active gypsy/Ty3 retrotransposons or retroviruses in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):599–601. [PMC free article] [PubMed]
  • Kliman RM, Hey J. Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol. 1993 Nov;10(6):1239–1258. [PubMed]
  • Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998 Dec 11;282(5396):2012–2018. [PubMed]
  • LaMunyon CW, Ward S. Increased competitiveness of nematode sperm bearing the male X chromosome. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):185–189. [PMC free article] [PubMed]
  • Cao L, Alani E, Kleckner N. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell. 1990 Jun 15;61(6):1089–1101. [PubMed]
  • Langley CH, Montgomery E, Hudson R, Kaplan N, Charlesworth B. On the role of unequal exchange in the containment of transposable element copy number. Genet Res. 1988 Dec;52(3):223–235. [PubMed]
  • Charlesworth B, Morgan MT, Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. [PMC free article] [PubMed]
  • Li W, Shaw JE. A variant Tc4 transposable element in the nematode C. elegans could encode a novel protein. Nucleic Acids Res. 1993 Jan 11;21(1):59–67. [PMC free article] [PubMed]
  • Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994 Sep 15;371(6494):215–220. [PubMed]
  • Marín I, Plata-Rengifo P, Labrador M, Fontdevila A. Evolutionary relationships among the members of an ancient class of non-LTR retrotransposons found in the nematode Caenorhabditis elegans. Mol Biol Evol. 1998 Nov;15(11):1390–1402. [PubMed]
  • Charlesworth B, Langley CH, Sniegowski PD. Transposable element distributions in Drosophila. Genetics. 1997 Dec;147(4):1993–1995. [PMC free article] [PubMed]
  • Smith JM, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed]
  • Collins JJ, Anderson P. The Tc5 family of transposable elements in Caenorhabditis elegans. Genetics. 1994 Jul;137(3):771–781. [PMC free article] [PubMed]
  • McCarron M, Duttaroy A, Doughty G, Chovnick A. Drosophila P element transposase induces male recombination additively and without a requirement for P element excision or insertion. Genetics. 1994 Mar;136(3):1013–1023. [PMC free article] [PubMed]
  • Collins J, Forbes E, Anderson P. The Tc3 family of transposable genetic elements in Caenorhabditis elegans. Genetics. 1989 Jan;121(1):47–55. [PMC free article] [PubMed]
  • Devine SE, Chissoe SL, Eby Y, Wilson RK, Boeke JD. A transposon-based strategy for sequencing repetitive DNA in eukaryotic genomes. Genome Res. 1997 May;7(5):551–563. [PMC free article] [PubMed]
  • Dib C, Fauré S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboun E, et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. [PubMed]
  • Moore JK, Haber JE. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature. 1996 Oct 17;383(6601):644–646. [PubMed]
  • Dooner HK, Martínez-Férez IM. Germinal excisions of the maize transposon activator do not stimulate meiotic recombination or homology-dependent repair at the bz locus. Genetics. 1997 Dec;147(4):1923–1932. [PMC free article] [PubMed]
  • Naclerio G, Cangiano G, Coulson A, Levitt A, Ruvolo V, La Volpe A. Molecular and genomic organization of clusters of repetitive DNA sequences in Caenorhabditis elegans. J Mol Biol. 1992 Jul 5;226(1):159–168. [PubMed]
  • Dreyfus DH, Emmons SW. A transposon-related palindromic repetitive sequence from C. elegans. Nucleic Acids Res. 1991 Apr 25;19(8):1871–1877. [PMC free article] [PubMed]
  • Pasyukova E, Nuzhdin S, Li W, Flavell AJ. Germ line transposition of the copia retrotransposon in Drosophila melanogaster is restricted to males by tissue-specific control of copia RNA levels. Mol Gen Genet. 1997 Jun;255(1):115–124. [PubMed]
  • Emmons SW, Rosenzweig B, Hirsh D. Arrangement of repeated sequences in the DNA of the nematode Caenorhabditis elegans. J Mol Biol. 1980 Dec 25;144(4):481–500. [PubMed]
  • Plasterk RH. Molecular mechanisms of transposition and its control. Cell. 1993 Sep 10;74(5):781–786. [PubMed]
  • Goldman AS, Lichten M. The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. Genetics. 1996 Sep;144(1):43–55. [PMC free article] [PubMed]
  • Rezsohazy R, van Luenen HG, Durbin RM, Plasterk RH. Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans. Nucleic Acids Res. 1997 Oct 15;25(20):4048–4054. [PMC free article] [PubMed]
  • Rosenzweig B, Liao LW, Hirsh D. Sequence of the C. elegans transposable element Tc1. Nucleic Acids Res. 1983 Jun 25;11(12):4201–4209. [PMC free article] [PubMed]
  • Ruvolo V, Hill JE, Levitt A. The Tc2 transposon of Caenorhabditis elegans has the structure of a self-regulated element. DNA Cell Biol. 1992 Mar;11(2):111–122. [PubMed]
  • Hill WG, Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966 Dec;8(3):269–294. [PubMed]
  • Shapiro JA. Transposable elements as the key to a 21st century view of evolution. Genetica. 1999;107(1-3):171–179. [PubMed]
  • Stephan W, Cho S. Possible role of natural selection in the formation of tandem-repetitive noncoding DNA. Genetics. 1994 Jan;136(1):333–341. [PMC free article] [PubMed]
  • Hodgkin J, Horvitz HR, Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. [PMC free article] [PubMed]
  • Sulston JE, Brenner S. The DNA of Caenorhabditis elegans. Genetics. 1974 May;77(1):95–104. [PMC free article] [PubMed]
  • Surzycki SA, Belknap WR. Repetitive-DNA elements are similarly distributed on Caenorhabditis elegans autosomes. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):245–249. [PMC free article] [PubMed]
  • Acad BA, Weiss R. Regional myocardial O2 consumption and coronary blood flow responses to acetylcholine in rabbit heart. Arch Int Physiol Biochim. 1989 Apr;97(2):197–204. [PubMed]
  • Vieira C, Biémont C. Selection against transposable elements in D. simulans and D. melanogaster. Genet Res. 1996 Aug;68(1):9–15. [PubMed]
  • Kazazian HH, Jr, Moran JV. The impact of L1 retrotransposons on the human genome. Nat Genet. 1998 May;19(1):19–24. [PubMed]
  • Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell. 1999 Oct 15;99(2):133–141. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...