• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Nov 2000; 156(3): 1005–1023.
PMCID: PMC1461303

Genetic analysis reveals that FLO11 upregulation and cell polarization independently regulate invasive growth in Saccharomyces cerevisiae.

Abstract

Under inducing conditions, haploid Saccharomyces cerevisiae perform a dimorphic transition from yeast-form growth on the agar surface to invasive growth, where chains of cells dig into the solid growth medium. Previous work on signaling cascades that promote agar invasion has demonstrated upregulation of FLO11, a cell-surface flocculin involved in cell-cell adhesion. We find that increasing FLO11 transcription is sufficient to induce both invasive and filamentous growth. A genetic screen for repressors of FLO11 isolated mutant strains that dig into agar (dia) and identified mutations in 35 different genes: ELM1, HSL1, HSL7, BUD3, BUD4, BUD10, AXL1, SIR2, SIR4, BEM2, PGI1, GND1, YDJ1, ARO7, GRR1, CDC53, HSC82, ZUO1, ADH1, CSE2, GCR1, IRA1, MSN5, SRB8, SSN3, SSN8, BPL1, GTR1, MED1, SKN7, TAF25, DIA1, DIA2, DIA3, and DIA4. Indeed, agar invasion in 20 dia mutants requires upregulation of the endogenous FLO11 promoter. However, 13 mutants promote agar invasion even with FLO11 clamped at a constitutive low-expression level. These FLO11 promoter-independent dia mutants establish distinct invasive growth pathways due to polarized bud site selection and/or cell elongation. Epistasis with the STE MAP kinase cascade and cytokinesis/budding checkpoint shows these pathways are targets of DIA genes that repress agar invasion by FLO11 promoter-dependent and -independent mechanisms, respectively.

Full Text

The Full Text of this article is available as a PDF (879K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Banuett F. Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev. 1998 Jun;62(2):249–274. [PMC free article] [PubMed]
  • Bardwell L, Cook JG, Zhu-Shimoni JX, Voora D, Thorner J. Differential regulation of transcription: repression by unactivated mitogen-activated protein kinase Kss1 requires the Dig1 and Dig2 proteins. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15400–15405. [PMC free article] [PubMed]
  • Blacketer MJ, Koehler CM, Coats SG, Myers AM, Madaule P. Regulation of dimorphism in Saccharomyces cerevisiae: involvement of the novel protein kinase homolog Elm1p and protein phosphatase 2A. Mol Cell Biol. 1993 Sep;13(9):5567–5581. [PMC free article] [PubMed]
  • Bony M, Barre P, Blondin B. Distribution of the flocculation protein, flop, at the cell surface during yeast growth: the availability of flop determines the flocculation level. Yeast. 1998 Jan 15;14(1):25–35. [PubMed]
  • Bouquin N, Barral Y, Courbeyrette R, Blondel M, Snyder M, Mann C. Regulation of cytokinesis by the Elm1 protein kinase in Saccharomyces cerevisiae. J Cell Sci. 2000 Apr;113(Pt 8):1435–1445. [PubMed]
  • Bun-Ya M, Harashima S, Oshima Y. Putative GTP-binding protein, Gtr1, associated with the function of the Pho84 inorganic phosphate transporter in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Jul;12(7):2958–2966. [PMC free article] [PubMed]
  • Burns N, Grimwade B, Ross-Macdonald PB, Choi EY, Finberg K, Roeder GS, Snyder M. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 1994 May 1;8(9):1087–1105. [PubMed]
  • Cook JG, Bardwell L, Kron SJ, Thorner J. Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev. 1996 Nov 15;10(22):2831–2848. [PubMed]
  • Cronan JE, Jr, Wallace JC. The gene encoding the biotin-apoprotein ligase of Saccharomyces cerevisiae. FEMS Microbiol Lett. 1995 Aug 1;130(2-3):221–229. [PubMed]
  • Davenport KD, Williams KE, Ullmann BD, Gustin MC. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants. Genetics. 1999 Nov;153(3):1091–1103. [PMC free article] [PubMed]
  • Dickinson JR. Biochemical and genetic studies on the function of, and relationship between, the PGI1- and CDC30-encoded phosphoglucose isomerases in Saccharomyces cerevisiae. J Gen Microbiol. 1991 Apr;137(4):765–770. [PubMed]
  • Edgington NP, Blacketer MJ, Bierwagen TA, Myers AM. Control of Saccharomyces cerevisiae filamentous growth by cyclin-dependent kinase Cdc28. Mol Cell Biol. 1999 Feb;19(2):1369–1380. [PMC free article] [PubMed]
  • Gale CA, Bendel CM, McClellan M, Hauser M, Becker JM, Berman J, Hostetter MK. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science. 1998 Feb 27;279(5355):1355–1358. [PubMed]
  • Galitski T, Saldanha AJ, Styles CA, Lander ES, Fink GR. Ploidy regulation of gene expression. Science. 1999 Jul 9;285(5425):251–254. [PubMed]
  • Ahn SH, Acurio A, Kron SJ. Regulation of G2/M progression by the STE mitogen-activated protein kinase pathway in budding yeast filamentous growth. Mol Biol Cell. 1999 Oct;10(10):3301–3316. [PMC free article] [PubMed]
  • Gietz D, St Jean A, Woods RA, Schiestl RH. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. [PMC free article] [PubMed]
  • Amon A. Regulation of B-type cyclin proteolysis by Cdc28-associated kinases in budding yeast. EMBO J. 1997 May 15;16(10):2693–2702. [PMC free article] [PubMed]
  • Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell. 1992 Mar 20;68(6):1077–1090. [PubMed]
  • Balciunas D, Ronne H. Three subunits of the RNA polymerase II mediator complex are involved in glucose repression. Nucleic Acids Res. 1995 Nov 11;23(21):4421–4425. [PMC free article] [PubMed]
  • Grenson M, Mousset M, Wiame JM, Bechet J. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochim Biophys Acta. 1966 Oct 31;127(2):325–338. [PubMed]
  • Lu Z, Cyr DM. Protein folding activity of Hsp70 is modified differentially by the hsp40 co-chaperones Sis1 and Ydj1. J Biol Chem. 1998 Oct 23;273(43):27824–27830. [PubMed]
  • Hollenhorst PC, Bose ME, Mielke MR, Müller U, Fox CA. Forkhead genes in transcriptional silencing, cell morphology and the cell cycle. Overlapping and distinct functions for FKH1 and FKH2 in Saccharomyces cerevisiae. Genetics. 2000 Apr;154(4):1533–1548. [PMC free article] [PubMed]
  • Madhani HD, Fink GR. The riddle of MAP kinase signaling specificity. Trends Genet. 1998 Apr;14(4):151–155. [PubMed]
  • Madhani HD, Styles CA, Fink GR. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell. 1997 Nov 28;91(5):673–684. [PubMed]
  • Ivy JM, Klar AJ, Hicks JB. Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol. 1986 Feb;6(2):688–702. [PMC free article] [PubMed]
  • Madhani HD, Galitski T, Lander ES, Fink GR. Effectors of a developmental mitogen-activated protein kinase cascade revealed by expression signatures of signaling mutants. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12530–12535. [PMC free article] [PubMed]
  • Jaquenoud M, Gulli MP, Peter K, Peter M. The Cdc42p effector Gic2p is targeted for ubiquitin-dependent degradation by the SCFGrr1 complex. EMBO J. 1998 Sep 15;17(18):5360–5373. [PMC free article] [PubMed]
  • Mitchell AP. Dimorphism and virulence in Candida albicans. Curr Opin Microbiol. 1998 Dec;1(6):687–692. [PubMed]
  • Kaiser P, Sia RA, Bardes EG, Lew DJ, Reed SI. Cdc34 and the F-box protein Met30 are required for degradation of the Cdk-inhibitory kinase Swe1. Genes Dev. 1998 Aug 15;12(16):2587–2597. [PMC free article] [PubMed]
  • Mösch HU, Fink GR. Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics. 1997 Mar;145(3):671–684. [PMC free article] [PubMed]
  • Kimmerly WJ, Rine J. Replication and segregation of plasmids containing cis-acting regulatory sites of silent mating-type genes in Saccharomyces cerevisiae are controlled by the SIR genes. Mol Cell Biol. 1987 Dec;7(12):4225–4237. [PMC free article] [PubMed]
  • Mösch HU, Kübler E, Krappmann S, Fink GR, Braus GH. Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell. 1999 May;10(5):1325–1335. [PMC free article] [PubMed]
  • Kimura Y, Yahara I, Lindquist S. Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways. Science. 1995 Jun 2;268(5215):1362–1365. [PubMed]
  • Pan X, Heitman J. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Jul;19(7):4874–4887. [PMC free article] [PubMed]
  • King L, Butler G. Ace2p, a regulator of CTS1 (chitinase) expression, affects pseudohyphal production in Saccharomyces cerevisiae. Curr Genet. 1998 Sep;34(3):183–191. [PubMed]
  • Patton EE, Willems AR, Sa D, Kuras L, Thomas D, Craig KL, Tyers M. Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box proteincomplexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev. 1998 Mar 1;12(5):692–705. [PMC free article] [PubMed]
  • Kron SJ, Gow NA. Budding yeast morphogenesis: signalling, cytoskeleton and cell cycle. Curr Opin Cell Biol. 1995 Dec;7(6):845–855. [PubMed]
  • Pringle JR, Preston RA, Adams AE, Stearns T, Drubin DG, Haarer BK, Jones EW. Fluorescence microscopy methods for yeast. Methods Cell Biol. 1989;31:357–435. [PubMed]
  • Kron SJ, Styles CA, Fink GR. Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol Biol Cell. 1994 Sep;5(9):1003–1022. [PMC free article] [PubMed]
  • Roberts RL, Mösch HU, Fink GR. 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae. Cell. 1997 Jun 27;89(7):1055–1065. [PubMed]
  • Lambrechts MG, Bauer FF, Marmur J, Pretorius IS. Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8419–8424. [PMC free article] [PubMed]
  • Robertson LS, Fink GR. The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13783–13787. [PMC free article] [PubMed]
  • Lew DJ, Reed SI. A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J Cell Biol. 1995 May;129(3):739–749. [PMC free article] [PubMed]
  • Rupp S, Summers E, Lo HJ, Madhani H, Fink G. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 1999 Mar 1;18(5):1257–1269. [PMC free article] [PubMed]
  • Liu H, Styles CA, Fink GR. Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science. 1993 Dec 10;262(5140):1741–1744. [PubMed]
  • Lo WS, Dranginis AM. FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol. 1996 Dec;178(24):7144–7151. [PMC free article] [PubMed]
  • Simon JR. Transformation of intact yeast cells by electroporation. Methods Enzymol. 1993;217:478–483. [PubMed]
  • Lo WS, Dranginis AM. The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell. 1998 Jan;9(1):161–171. [PMC free article] [PubMed]
  • Stanhill A, Schick N, Engelberg D. The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol Cell Biol. 1999 Nov;19(11):7529–7538. [PMC free article] [PubMed]
  • Lobo Z, Maitra PK. Pentose phosphate pathway mutants of yeast. Mol Gen Genet. 1982;185(2):367–368. [PubMed]
  • Tamaki H, Miwa T, Shinozaki M, Saito M, Yun CW, Yamamoto K, Kumagai H. GPR1 regulates filamentous growth through FLO11 in yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2000 Jan 7;267(1):164–168. [PubMed]
  • Loeb JD, Kerentseva TA, Pan T, Sepulveda-Becerra M, Liu H. Saccharomyces cerevisiae G1 cyclins are differentially involved in invasive and pseudohyphal growth independent of the filamentation mitogen-activated protein kinase pathway. Genetics. 1999 Dec;153(4):1535–1546. [PMC free article] [PubMed]
  • Tanaka K, Matsumoto K, Toh-E A. IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae. Mol Cell Biol. 1989 Feb;9(2):757–768. [PMC free article] [PubMed]
  • Longtine MS, McKenzie A, 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998 Jul;14(10):953–961. [PubMed]
  • Steyerberg EW, Kievit J, de Mol Van Otterloo JC, van Bockel JH, Eijkemans MJ, Habbema JD. Perioperative mortality of elective abdominal aortic aneurysm surgery. A clinical prediction rule based on literature and individual patient data. Arch Intern Med. 1995 Oct 9;155(18):1998–2004. [PubMed]
  • Longtine MS, McKenzie A, 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998 Jul;14(10):953–961. [PubMed]
  • Tedford K, Kim S, Sa D, Stevens K, Tyers M. Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr Biol. 1997 Apr 1;7(4):228–238. [PubMed]
  • Lorenz MC, Heitman J. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J. 1998 Aug 10;17(5):1236–1247. [PMC free article] [PubMed]
  • Yan W, Schilke B, Pfund C, Walter W, Kim S, Craig EA. Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J. 1998 Aug 17;17(16):4809–4817. [PMC free article] [PubMed]
  • Lorenz MC, Cutler NS, Heitman J. Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol Biol Cell. 2000 Jan;11(1):183–199. [PMC free article] [PubMed]
  • Zahner JE, Harkins HA, Pringle JR. Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1996 Apr;16(4):1857–1870. [PMC free article] [PubMed]
  • Lorenz MC, Pan X, Harashima T, Cardenas ME, Xue Y, Hirsch JP, Heitman J. The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics. 2000 Feb;154(2):609–622. [PMC free article] [PubMed]
  • Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B. Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature. 2000 Jul 6;406(6791):90–94. [PubMed]
  • Louvion JF, Abbas-Terki T, Picard D. Hsp90 is required for pheromone signaling in yeast. Mol Biol Cell. 1998 Nov;9(11):3071–3083. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Gene
    Gene
    Gene links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • MedGen
    MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links
  • Taxonomy
    Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...