• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Jan 2000; 154(1): 299–310.
PMCID: PMC1460924

Genetic architecture of a morphological shape difference between two Drosophila species.


The size and shape of the posterior lobe of the male genital arch differs dramatically between Drosophila simulans and D. mauritiana. This difference can be quantified with a morphometric descriptor (PC1) based on elliptical Fourier and principal components analyses. The genetic basis of the interspecific difference in PC1 was investigated by the application of quantitative trait locus (QTL) mapping procedures to segregating backcross populations. The parental difference (35 environmental standard deviations) and the heritability of PC1 in backcross populations (>90%) are both very large. The use of multiple interval mapping gives evidence for 19 different QTL. The greatest additive effect estimate accounts for 11. 4% of the parental difference but could represent multiple closely linked QTL. Dominance parameter estimates vary among loci from essentially no dominance to complete dominance, and mauritiana alleles tend to be dominant over simulans alleles. Epistasis appears to be relatively unimportant as a source of variation. All but one of the additive effect estimates have the same sign, which means that one species has nearly all plus alleles and the other nearly all minus alleles. This result is unexpected under many evolutionary scenarios and suggests a history of strong directional selection acting on the posterior lobe.

Full Text

The Full Text of this article is available as a PDF (179K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Kao CH, Zeng ZB. General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics. 1997 Jun;53(2):653–665. [PubMed]
  • Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci. Genetics. 1999 Jul;152(3):1203–1216. [PMC free article] [PubMed]
  • Lande R. Models of speciation by sexual selection on polygenic traits. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3721–3725. [PMC free article] [PubMed]
  • Alpert KB, Tanksley SD. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15503–15507. [PMC free article] [PubMed]
  • Liu J, Mercer JM, Stam LF, Gibson GC, Zeng ZB, Laurie CC. Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana. Genetics. 1996 Apr;142(4):1129–1145. [PMC free article] [PubMed]
  • Long AD, Mullaney SL, Reid LA, Fry JD, Langley CH, Mackay TF. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1273–1291. [PMC free article] [PubMed]
  • Carroll SB, Weatherbee SD, Langeland JA. Homeotic genes and the regulation and evolution of insect wing number. Nature. 1995 May 4;375(6526):58–61. [PubMed]
  • Maekawa B, Cole TG, Seip RL, Bylund D. Apolipoprotein E genotyping methods for the clinical laboratory. J Clin Lab Anal. 1995;9(1):63–69. [PubMed]
  • Orr HA. Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data. Genetics. 1998 Aug;149(4):2099–2104. [PMC free article] [PubMed]
  • Cormier RT, Hong KH, Halberg RB, Hawkins TL, Richardson P, Mulherkar R, Dove WF, Lander ES. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat Genet. 1997 Sep;17(1):88–91. [PubMed]
  • Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature. 1986 Nov 13;324(6093):163–166. [PubMed]
  • deVicente MC, Tanksley SD. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics. 1993 Jun;134(2):585–596. [PMC free article] [PubMed]
  • Shubin N, Tabin C, Carroll S. Fossils, genes and the evolution of animal limbs. Nature. 1997 Aug 14;388(6643):639–648. [PubMed]
  • Tanksley SD. Mapping polygenes. Annu Rev Genet. 1993;27:205–233. [PubMed]
  • Hey J, Kliman RM. Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Mol Biol Evol. 1993 Jul;10(4):804–822. [PubMed]
  • Iwasa Y, Pomiankowski A. Continual change in mate preferences. Nature. 1995 Oct 5;377(6548):420–422. [PubMed]
  • Jiang C, Zeng ZB. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics. 1995 Jul;140(3):1111–1127. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...