• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Dec 1999; 153(4): 1839–1850.
PMCID: PMC1460878

Genetic analyses of visual pigments of the pigeon (Columba livia).


We isolated five classes of retinal opsin genes rh1(Cl), rh2(Cl), sws1(Cl), sws2(Cl), and lws(Cl) from the pigeon; these encode RH1(Cl), RH2(Cl), SWS1(Cl), SWS2(Cl), and LWS(Cl) opsins, respectively. Upon binding to 11-cis-retinal, these opsins regenerate the corresponding photosensitive molecules, visual pigments. The absorbance spectra of visual pigments have a broad bell shape with the peak, being called lambdamax. Previously, the SWS1(Cl) opsin cDNA was isolated from the pigeon retinal RNA, expressed in cultured COS1 cells, reconstituted with 11-cis-retinal, and the lambdamax of the resulting SWS1(Cl) pigment was shown to be 393 nm. In this article, using the same methods, the lambdamax values of RH1(Cl), RH2(Cl), SWS2(Cl), and LWS(Cl) pigments were determined to be 502, 503, 448, and 559 nm, respectively. The pigeon is also known for its UV vision, detecting light at 320-380 nm. Being the only pigments that absorb light below 400 nm, the SWS1(Cl) pigments must mediate its UV vision. We also determined that a nonretinal P(Cl) pigment in the pineal gland of the pigeon has a lambdamax value at 481 nm.

Full Text

The Full Text of this article is available as a PDF (271K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Blackshaw S, Snyder SH. Parapinopsin, a novel catfish opsin localized to the parapineal organ, defines a new gene family. J Neurosci. 1997 Nov 1;17(21):8083–8092. [PubMed]
  • BLOUGH DS. Spectral sensitivity in the pigeon. J Opt Soc Am. 1957 Sep;47(9):827–833. [PubMed]
  • Bowmaker JK. The visual pigments, oil droplets and spectral sensitivity of the pigeon. Vision Res. 1977;17(10):1129–1138. [PubMed]
  • Bowmaker JK, Heath LA, Wilkie SE, Hunt DM. Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Res. 1997 Aug;37(16):2183–2194. [PubMed]
  • Chen DM, Goldsmith TH. Four spectral classes of cone in the retinas of birds. J Comp Physiol A. 1986 Oct;159(4):473–479. [PubMed]
  • Chen DM, Collins JS, Goldsmith TH. The ultraviolet receptor of bird retinas. Science. 1984 Jul 20;225(4659):337–340. [PubMed]
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. [PubMed]
  • Okano T, Kojima D, Fukada Y, Shichida Y, Yoshizawa T. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5932–5936. [PMC free article] [PubMed]
  • Emmerton J, Schwemer J, Muth I, Schlecht P. Spectral transmission of the ocular media of the pegion (Columba livia). Invest Ophthalmol Vis Sci. 1980 Nov;19(11):1382–1387. [PubMed]
  • Okano T, Yoshizawa T, Fukada Y. Pinopsin is a chicken pineal photoreceptive molecule. Nature. 1994 Nov 3;372(6501):94–97. [PubMed]
  • Okano T, Takanaka Y, Nakamura A, Hirunagi K, Adachi A, Ebihara S, Fukada Y. Immunocytochemical identification of pinopsin in pineal glands of chicken and pigeon. Brain Res Mol Brain Res. 1997 Oct 15;50(1-2):190–196. [PubMed]
  • Govardovskii VI, Zueva LV. Visual pigments of chicken and pigeon. Vision Res. 1977;17(4):537–543. [PubMed]
  • Graf V, Norren DV. A blue sensitive mechanism in the pigeon retina: lambda max 400 nm. Vision Res. 1974 Nov;14(11):1203–1209. [PubMed]
  • Hadjeb N, Berkowitz GA. Preparation of T-over-hang vectors with high PCR product cloning efficiency. Biotechniques. 1996 Jan;20(1):20–22. [PubMed]
  • Remy M, Emmerton J. Behavioral spectral sensitivities of different retinal areas in pigeons. Behav Neurosci. 1989 Feb;103(1):170–177. [PubMed]
  • Hargrave PA, McDowell JH, Curtis DR, Wang JK, Juszczak E, Fong SL, Rao JK, Argos P. The structure of bovine rhodopsin. Biophys Struct Mech. 1983;9(4):235–244. [PubMed]
  • Hisatomi O, Satoh T, Barthel LK, Stenkamp DL, Raymond PA, Tokunaga F. Molecular cloning and characterization of the putative ultraviolet-sensitive visual pigment of goldfish. Vision Res. 1996 Apr;36(7):933–939. [PubMed]
  • SAID FS, WEALE RA. The variation with age of the spectral transmissivity of the living human crystalline lens. Gerontologia. 1959;3:213–231. [PubMed]
  • Karnik SS, Sakmar TP, Chen HB, Khorana HG. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8459–8463. [PMC free article] [PubMed]
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. [PubMed]
  • Sakmar TP, Franke RR, Khorana HG. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8309–8313. [PMC free article] [PubMed]
  • Kawamura S, Yokoyama S. Molecular characterization of the pigeon P-opsin gene. Gene. 1996 Dec 5;182(1-2):213–214. [PubMed]
  • Kawamura S, Yokoyama S. Phylogenetic relationships among short wavelength-sensitive opsins of American chameleon (Anolis carolinensis) and other vertebrates. Vision Res. 1996 Sep;36(18):2797–2804. [PubMed]
  • Soni BG, Foster RG. A novel and ancient vertebrate opsin. FEBS Lett. 1997 Apr 14;406(3):279–283. [PubMed]
  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. [PMC free article] [PubMed]
  • Kawamura S, Yokoyama S. Expression of visual and nonvisual opsins in American chameleon. Vision Res. 1997 Jul;37(14):1867–1871. [PubMed]
  • Kawamura S, Yokoyama S. Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis). Vision Res. 1998 Jan;38(1):37–44. [PubMed]
  • Norren DV. Two short wavelength sensitive cone systems in pigeon, chicken and daw. Vision Res. 1975 Oct;15:1164–1166. [PubMed]
  • Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. [PMC free article] [PubMed]
  • Vos Hzn JJ, Coemans MA, Nuboer JF. The photopic sensitivity of the yellow field of the pigeon's retina to ultraviolet light. Vision Res. 1994 Jun;34(11):1419–1425. [PubMed]
  • Kreithen ML, Eisner T. Ultraviolet light detection by the homing pigeon. Nature. 1978 Mar 23;272(5651):347–348. [PubMed]
  • Wald G. HUMAN VISION AND THE SPECTRUM. Science. 1945 Jun 29;101(2635):653–658. [PubMed]
  • Wang JK, McDowell JH, Hargrave PA. Site of attachment of 11-cis-retinal in bovine rhodopsin. Biochemistry. 1980 Oct 28;19(22):5111–5117. [PubMed]
  • Martin GR, Muntz WR. Spectral sensitivity of the red and yellow oil droplet fields of the pigeon (Columba livia). Nature. 1978 Aug 10;274(5671):620–621. [PubMed]
  • Wortel JF, Wubbels RJ, Nuboer JF. Photopic spectral sensitivities of the red and the yellow field of the pigeon retina. Vision Res. 1984;24(9):1107–1113. [PubMed]
  • Max M, McKinnon PJ, Seidenman KJ, Barrett RK, Applebury ML, Takahashi JS, Margolskee RF. Pineal opsin: a nonvisual opsin expressed in chick pineal. Science. 1995 Mar 10;267(5203):1502–1506. [PubMed]
  • Wright AA. The influence of ultraviolet radiation on the pigeon's color discrimination. J Exp Anal Behav. 1972 May;17(3):325–337. [PMC free article] [PubMed]
  • Molday RS, MacKenzie D. Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. Biochemistry. 1983 Feb 1;22(3):653–660. [PubMed]
  • Yokoyama R, Yokoyama S. Molecular characterization of a blue visual pigment gene in the fish Astyanax fasciatus. FEBS Lett. 1993 Nov 8;334(1):27–31. [PubMed]
  • Nathans J. Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin. Biochemistry. 1990 Oct 16;29(41):9746–9752. [PubMed]
  • Yokoyama S. Gene duplications and evolution of the short wavelength-sensitive visual pigments in vertebrates. Mol Biol Evol. 1994 Jan;11(1):32–39. [PubMed]
  • Nathans J, Hogness DS. Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell. 1983 Oct;34(3):807–814. [PubMed]
  • Yokoyama S. Amino acid replacements and wavelength absorption of visual pigments in vertebrates. Mol Biol Evol. 1995 Jan;12(1):53–61. [PubMed]
  • Nathans J, Thomas D, Hogness DS. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science. 1986 Apr 11;232(4747):193–202. [PubMed]
  • Nathans J, Piantanida TP, Eddy RL, Shows TB, Hogness DS. Molecular genetics of inherited variation in human color vision. Science. 1986 Apr 11;232(4747):203–210. [PubMed]
  • Yokoyama S, Radlwimmer FB. The "five-sites" rule and the evolution of red and green color vision in mammals. Mol Biol Evol. 1998 May;15(5):560–567. [PubMed]
  • Ohguro H, Johnson RS, Ericsson LH, Walsh KA, Palczewski K. Control of rhodopsin multiple phosphorylation. Biochemistry. 1994 Feb 1;33(4):1023–1028. [PubMed]
  • Yokoyama S, Radlwimmer FB. The molecular genetics of red and green color vision in mammals. Genetics. 1999 Oct;153(2):919–932. [PMC free article] [PubMed]
  • Yokoyama S, Radlwimmer FB, Kawamura S. Regeneration of ultraviolet pigments of vertebrates. FEBS Lett. 1998 Feb 20;423(2):155–158. [PubMed]
  • Zhukovsky EA, Oprian DD. Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science. 1989 Nov 17;246(4932):928–930. [PubMed]
  • Yokoyama S, Zhang H. Cloning and characterization of the pineal gland-specific opsin gene of marine lamprey (Petromyzon marinus). Gene. 1997 Nov 20;202(1-2):89–93. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...