• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Nov 1999; 153(3): 1077–1089.
PMCID: PMC1460812

Genealogical evidence for positive selection in the nef gene of HIV-1.

Abstract

The pattern and process of evolution in the nef gene of HIV-1 was analyzed within and among patients. Using a maximum likelihood method that allows for variable intensity of selection pressure among codons, strong positive selection was detected in a hemophiliac patient over 30 mo of infection. By reconstructing the process of allele substitution in this patient using parsimony, the synapomorphic amino acid changes separating each time point were found to have high probabilities of being under positive selection, with selective coefficients of at least 3.6%. Positive selection was also detected among 39 nef sequences from HIV-1 subtype B. In contrast, multiple pairwise comparisons of nonsynonymous and synonymous substitution rates provided no good evidence for positive selection and sliding window analyses failed to detect most positively selected sites. These findings demonstrate that positive selection is an important determinant of nef gene evolution and that genealogy-based methods outperform pairwise methods in the detection of adaptive evolution. Mapping the locations of positively selected sites may also be of use in identifying targets of the immune response and hence aid vaccine design.

Full Text

The Full Text of this article is available as a PDF (248K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. [PMC free article] [PubMed]
  • Goldman N, Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 1994 Sep;11(5):725–736. [PubMed]
  • Goudsmit J, De Ronde A, Ho DD, Perelson AS. Human immunodeficiency virus fitness in vivo: calculations based on a single zidovudine resistance mutation at codon 215 of reverse transcriptase. J Virol. 1996 Aug;70(8):5662–5664. [PMC free article] [PubMed]
  • Goulder PJ, Phillips RE, Colbert RA, McAdam S, Ogg G, Nowak MA, Giangrande P, Luzzi G, Morgan B, Edwards A, et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med. 1997 Feb;3(2):212–217. [PubMed]
  • Holmes EC, de A Zanotto PM. Genetic drift of human immunodeficiency virus type 1? J Virol. 1998 Jan;72(1):886–887. [PMC free article] [PubMed]
  • Karlsson AC, Lindbäck S, Gaines H, Sönnerborg A. Characterization of the viral population during primary HIV-1 infection. AIDS. 1998 May 28;12(8):839–847. [PubMed]
  • Kestler HW, 3rd, Ringler DJ, Mori K, Panicali DL, Sehgal PK, Daniel MD, Desrosiers RC. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell. 1991 May 17;65(4):651–662. [PubMed]
  • Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, Desrosiers RC. Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med. 1995 Jan 26;332(4):228–232. [PubMed]
  • Koenig S, Conley AJ, Brewah YA, Jones GM, Leath S, Boots LJ, Davey V, Pantaleo G, Demarest JF, Carter C, et al. Transfer of HIV-1-specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nat Med. 1995 Apr;1(4):330–336. [PubMed]
  • Kuhner MK, Yamato J, Felsenstein J. Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling. Genetics. 1995 Aug;140(4):1421–1430. [PMC free article] [PubMed]
  • Brown AJ. Analysis of HIV-1 env gene sequences reveals evidence for a low effective number in the viral population. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1862–1865. [PMC free article] [PubMed]
  • Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998 Jun 4;393(6684):478–480. [PubMed]
  • Bonhoeffer S, Holmes EC, Nowak MA. Causes of HIV diversity. Nature. 1995 Jul 13;376(6536):125–125. [PubMed]
  • Borrow P, Lewicki H, Wei X, Horwitz MS, Peffer N, Meyers H, Nelson JA, Gairin JE, Hahn BH, Oldstone MB, et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med. 1997 Feb;3(2):205–211. [PubMed]
  • McMichael A. T cell responses and viral escape. Cell. 1998 May 29;93(5):673–676. [PubMed]
  • Crandall KA, Kelsey CR, Imamichi H, Lane HC, Salzman NP. Parallel evolution of drug resistance in HIV: failure of nonsynonymous/synonymous substitution rate ratio to detect selection. Mol Biol Evol. 1999 Mar;16(3):372–382. [PubMed]
  • Messier W, Stewart CB. Episodic adaptive evolution of primate lysozymes. Nature. 1997 Jan 9;385(6612):151–154. [PubMed]
  • da Silva J, Hughes AL. Conservation of cytotoxic T lymphocyte (CTL) epitopes as a host strategy to constrain parasite adaptation: evidence from the nef gene of human immunodeficiency virus 1 (HIV-1). Mol Biol Evol. 1998 Oct;15(10):1259–1268. [PubMed]
  • Muse SV. Estimating synonymous and nonsynonymous substitution rates. Mol Biol Evol. 1996 Jan;13(1):105–114. [PubMed]
  • Musey L, Hu Y, Eckert L, Christensen M, Karchmer T, McElrath MJ. HIV-1 induces cytotoxic T lymphocytes in the cervix of infected women. J Exp Med. 1997 Jan 20;185(2):293–303. [PMC free article] [PubMed]
  • Delwart EL, Mullins JI, Gupta P, Learn GH, Jr, Holodniy M, Katzenstein D, Walker BD, Singh MK. Human immunodeficiency virus type 1 populations in blood and semen. J Virol. 1998 Jan;72(1):617–623. [PMC free article] [PubMed]
  • Endo T, Ikeo K, Gojobori T. Large-scale search for genes on which positive selection may operate. Mol Biol Evol. 1996 May;13(5):685–690. [PubMed]
  • Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. [PubMed]
  • Falk K, Rötzschke O, Stevanović S, Jung G, Rammensee HG. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. [PubMed]
  • Fitch WM, Leiter JM, Li XQ, Palese P. Positive Darwinian evolution in human influenza A viruses. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4270–4274. [PMC free article] [PubMed]
  • Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. 1998 Jun 4;393(6684):480–483. [PubMed]
  • Nowak MA, Anderson RM, Boerlijst MC, Bonhoeffer S, May RM, McMichael AJ. HIV-1 evolution and disease progression. Science. 1996 Nov 8;274(5289):1008–1011. [PubMed]
  • Ogg GS, Jin X, Bonhoeffer S, Dunbar PR, Nowak MA, Monard S, Segal JP, Cao Y, Rowland-Jones SL, Cerundolo V, et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science. 1998 Mar 27;279(5359):2103–2106. [PubMed]
  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. [PMC free article] [PubMed]
  • Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996 Mar 15;271(5255):1582–1586. [PubMed]
  • Plikat U, Nieselt-Struwe K, Meyerhans A. Genetic drift can dominate short-term human immunodeficiency virus type 1 nef quasispecies evolution in vivo. J Virol. 1997 Jun;71(6):4233–4240. [PMC free article] [PubMed]
  • Price DA, Goulder PJ, Klenerman P, Sewell AK, Easterbrook PJ, Troop M, Bangham CR, Phillips RE. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1890–1895. [PMC free article] [PubMed]
  • Welker R, Kottler H, Kalbitzer HR, Kräusslich HG. Human immunodeficiency virus type 1 Nef protein is incorporated into virus particles and specifically cleaved by the viral proteinase. Virology. 1996 May 1;219(1):228–236. [PubMed]
  • Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998 Jun 4;393(6684):474–478. [PubMed]
  • Rosenberg ES, Billingsley JM, Caliendo AM, Boswell SL, Sax PE, Kalams SA, Walker BD. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science. 1997 Nov 21;278(5342):1447–1450. [PubMed]
  • Satta Y, O'hUigin C, Takahata N, Klein J. Intensity of natural selection at the major histocompatibility complex loci. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7184–7188. [PMC free article] [PubMed]
  • Zanotto PM, Gao GF, Gritsun T, Marin MS, Jiang WR, Venugopal K, Reid HW, Gould EA. An arbovirus cline across the northern hemisphere. Virology. 1995 Jun 20;210(1):152–159. [PubMed]
  • Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA, Lifton MA, Racz P, Tenner-Racz K, Dalesandro M, Scallon BJ, et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science. 1999 Feb 5;283(5403):857–860. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...