• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Oct 1999; 153(2): 919–932.
PMCID: PMC1460773

The molecular genetics of red and green color vision in mammals.

Abstract

To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the "true" red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).

Full Text

The Full Text of this article is available as a PDF (257K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Pryde PG, Qureshi F, Hallak M, Kupsky W, Johnson MP, Evans MI. Two consecutive hydrolethalus syndrome-affected pregnancies in a nonconsanguinous black couple: discussion of problems in prenatal differential diagnosis of midline malformation syndromes. Am J Med Genet. 1993 Jun 15;46(5):537–541. [PubMed]
  • Jacobs GH, Neitz M, Deegan JF, Neitz J. Trichromatic colour vision in New World monkeys. Nature. 1996 Jul 11;382(6587):156–158. [PubMed]
  • Jacobs GH, Deegan JF, 2nd, Neitz J. Photopigment basis for dichromatic color vision in cows, goats, and sheep. Vis Neurosci. 1998 May-Jun;15(3):581–584. [PubMed]
  • Johnson RL, Grant KB, Zankel TC, Boehm MF, Merbs SL, Nathans J, Nakanishi K. Cloning and expression of goldfish opsin sequences. Biochemistry. 1993 Jan 12;32(1):208–214. [PubMed]
  • Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992 Jun;8(3):275–282. [PubMed]
  • Kawamura S, Yokoyama S. Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis). Vision Res. 1998 Jan;38(1):37–44. [PubMed]
  • Khorana HG, Knox BE, Nasi E, Swanson R, Thompson DA. Expression of a bovine rhodopsin gene in Xenopus oocytes: demonstration of light-dependent ionic currents. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7917–7921. [PMC free article] [PubMed]
  • Cao Y, Okada N, Hasegawa M. Phylogenetic position of guinea pigs revisited. Mol Biol Evol. 1997 Apr;14(4):461–464. [PubMed]
  • Chakraborty R, Nei M. Dynamics of gene differentiation between incompletely isolated populations of unequal sizes. Theor Popul Biol. 1974 Jun;5(3):460–469. [PubMed]
  • Kumar S, Hedges SB. A molecular timescale for vertebrate evolution. Nature. 1998 Apr 30;392(6679):917–920. [PubMed]
  • Merbs SL, Nathans J. Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments. Photochem Photobiol. 1993 Nov;58(5):706–710. [PubMed]
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. [PubMed]
  • Mollon JD, Bowmaker JK, Jacobs GH. Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proc R Soc Lond B Biol Sci. 1984 Sep 22;222(1228):373–399. [PubMed]
  • Nei M, Zhang J, Yokoyama S. Color vision of ancestral organisms of higher primates. Mol Biol Evol. 1997 Jun;14(6):611–618. [PubMed]
  • Neitz J, Jacobs GH. Electroretinogram measurements of cone spectral sensitivity in dichromatic monkeys. J Opt Soc Am A. 1984 Dec;1(12):1175–1180. [PubMed]
  • Fasick JI, Cronin TW, Hunt DM, Robinson PR. The visual pigments of the bottlenose dolphin (Tursiops truncatus). Vis Neurosci. 1998 Jul-Aug;15(4):643–651. [PubMed]
  • Neitz M, Neitz J, Jacobs GH. Spectral tuning of pigments underlying red-green color vision. Science. 1991 May 17;252(5008):971–974. [PubMed]
  • Guenther E, Zrenner E. The spectral sensitivity of dark- and light-adapted cat retinal ganglion cells. J Neurosci. 1993 Apr;13(4):1543–1550. [PubMed]
  • Hadjeb N, Berkowitz GA. Preparation of T-over-hang vectors with high PCR product cloning efficiency. Biotechniques. 1996 Jan;20(1):20–22. [PubMed]
  • Palacios AG, Varela FJ, Srivastava R, Goldsmith TH. Spectral sensitivity of cones in the goldfish, Carassius auratus. Vision Res. 1998 Jul;38(14):2135–2146. [PubMed]
  • Radlwimmer FB, Yokoyama S. Cloning and expression of the red visual pigment gene of goat (Capra hircus). Gene. 1997 Oct 1;198(1-2):211–215. [PubMed]
  • Hunt DM, Dulai KS, Cowing JA, Julliot C, Mollon JD, Bowmaker JK, Li WH, Hewett-Emmett D. Molecular evolution of trichromacy in primates. Vision Res. 1998 Nov;38(21):3299–3306. [PubMed]
  • Radlwimmer FB, Yokoyama S. Genetic analyses of the green visual pigments of rabbit (Oryctolagus cuniculus) and rat (Rattus norvegicus). Gene. 1998 Sep 18;218(1-2):103–109. [PubMed]
  • Jacobs GH, Deegan JF., 2nd Spectral sensitivity, photopigments, and color vision in the guinea pig (Cavia porcellus). Behav Neurosci. 1994 Oct;108(5):993–1004. [PubMed]
  • Register EA, Yokoyama R, Yokoyama S. Multiple origins of the green-sensitive opsin genes in fish. J Mol Evol. 1994 Sep;39(3):268–273. [PubMed]
  • Jacobs GH, Neitz J. Polymorphism of the middle wavelength cone in two species of South American monkey: Cebus apella and Callicebus moloch. Vision Res. 1987;27(8):1263–1268. [PubMed]
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. [PubMed]
  • Jacobs GH, Neitz J. Inheritance of color vision in a New World monkey (Saimiri sciureus). Proc Natl Acad Sci U S A. 1987 Apr;84(8):2545–2549. [PMC free article] [PubMed]
  • Shyue SK, Boissinot S, Schneider H, Sampaio I, Schneider MP, Abee CR, Williams L, Hewett-Emmett D, Sperling HG, Cowing JA, et al. Molecular genetics of spectral tuning in New World monkey color vision. J Mol Evol. 1998 Jun;46(6):697–702. [PubMed]
  • Jacobs GH, Neitz J, Crognale M. Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis). Vision Res. 1987;27(12):2089–2100. [PubMed]
  • Sun H, Macke JP, Nathans J. Mechanisms of spectral tuning in the mouse green cone pigment. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8860–8865. [PMC free article] [PubMed]
  • Jacobs GH, Neitz J, Deegan JF., 2nd Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature. 1991 Oct 17;353(6345):655–656. [PubMed]
  • Tovée MJ, Bowmaker JK, Mollon JD. The relationship between cone pigments and behavioural sensitivity in a New World monkey (Callithrix jacchus jacchus). Vision Res. 1992 May;32(5):867–878. [PubMed]
  • Jacobs GH, Neitz J, Neitz M. Genetic basis of polymorphism in the color vision of platyrrhine monkeys. Vision Res. 1993 Feb;33(3):269–274. [PubMed]
  • Travis DS, Bowmaker JK, Mollon JD. Polymorphism of visual pigments in a callitrichid monkey. Vision Res. 1988;28(4):481–490. [PubMed]
  • Yokoyama S, Radlwimmer FB. The "five-sites" rule and the evolution of red and green color vision in mammals. Mol Biol Evol. 1998 May;15(5):560–567. [PubMed]
  • Winderickx J, Lindsey DT, Sanocki E, Teller DY, Motulsky AG, Deeb SS. Polymorphism in red photopigment underlies variation in colour matching. Nature. 1992 Apr 2;356(6368):431–433. [PubMed]
  • Yokoyama S, Meany A, Wilkens H, Yokoyama R. Initial mutational steps toward loss of opsin gene function in cavefish. Mol Biol Evol. 1995 Jul;12(4):527–532. [PubMed]
  • Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997 Oct;13(5):555–556. [PubMed]
  • Yokoyama S, Radlwimmer FB, Kawamura S. Regeneration of ultraviolet pigments of vertebrates. FEBS Lett. 1998 Feb 20;423(2):155–158. [PubMed]
  • Yokoyama R, Yokoyama S. Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9315–9318. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...