• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Apr 1999; 151(4): 1425–1444.
PMCID: PMC1460551

Relative dependence of different outputs of the Saccharomyces cerevisiae pheromone response pathway on the MAP kinase Fus3p.

Abstract

Fus3p and Kss1p act at the end of a conserved signaling cascade that mediates numerous cellular responses for mating. To determine the role of Fus3p in different outputs, we isolated and characterized a series of partial-function fus3 point mutants for their ability to phosphorylate a substrate (Ste7p), activate Ste12p, undergo G1 arrest, form shmoos, select partners, mate, and recover. All the mutations lie in residues that are conserved among MAP kinases and are predicted to affect either enzyme activity or binding to Ste7p or substrates. The data argue that Fus3p regulates the various outputs assayed through the phosphorylation of multiple substrates. Different levels of Fus3p function are required for individual outputs, with the most function required for shmoo formation, the terminal output. The ability of Fus3p to promote shmoo formation strongly correlates with its ability to promote G1 arrest, suggesting that the two events are coupled. Fus3p promotes recovery through a mechanism that is distinct from its ability to promote G1 arrest and may involve a mechanism that does not require kinase activity. Moreover, catalytically inactive Fus3p inhibits the ability of active Fus3p to activate Ste12p and hastens recovery without blocking G1 arrest or shmoo formation. These results raise the possibility that in the absence of sustained activation of Fus3p, catalytically inactive Fus3p blocks further differentiation by restoring mitotic growth. Finally, suppression analysis argues that Kss1p contributes to the overall pheromone response in a wild-type strain, but that Fus3p is the critical kinase for all of the outputs tested.

Full Text

The Full Text of this article is available as a PDF (601K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Elion EA, Satterberg B, Kranz JE. FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1. Mol Biol Cell. 1993 May;4(5):495–510. [PMC free article] [PubMed]
  • Elion EA, Trueheart J, Fink GR. Fus2 localizes near the site of cell fusion and is required for both cell fusion and nuclear alignment during zygote formation. J Cell Biol. 1995 Sep;130(6):1283–1296. [PMC free article] [PubMed]
  • Errede B, Gartner A, Zhou Z, Nasmyth K, Ammerer G. MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro. Nature. 1993 Mar 18;362(6417):261–264. [PubMed]
  • Bardwell L, Cook JG, Chang EC, Cairns BR, Thorner J. Signaling in the yeast pheromone response pathway: specific and high-affinity interaction of the mitogen-activated protein (MAP) kinases Kss1 and Fus3 with the upstream MAP kinase kinase Ste7. Mol Cell Biol. 1996 Jul;16(7):3637–3650. [PMC free article] [PubMed]
  • Feng Y, Song LY, Kincaid E, Mahanty SK, Elion EA. Functional binding between Gbeta and the LIM domain of Ste5 is required to activate the MEKK Ste11. Curr Biol. 1998 Feb 26;8(5):267–278. [PubMed]
  • Gartner A, Nasmyth K, Ammerer G. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev. 1992 Jul;6(7):1280–1292. [PubMed]
  • Gietz RD, Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. [PubMed]
  • Herskowitz I. MAP kinase pathways in yeast: for mating and more. Cell. 1995 Jan 27;80(2):187–197. [PubMed]
  • Brill JA, Elion EA, Fink GR. A role for autophosphorylation revealed by activated alleles of FUS3, the yeast MAP kinase homolog. Mol Biol Cell. 1994 Mar;5(3):297–312. [PMC free article] [PubMed]
  • Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. [PubMed]
  • Brunet A, Pouysségur J. Identification of MAP kinase domains by redirecting stress signals into growth factor responses. Science. 1996 Jun 14;272(5268):1652–1655. [PubMed]
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. [PMC free article] [PubMed]
  • Kallunki T, Su B, Tsigelny I, Sluss HK, Dérijard B, Moore G, Davis R, Karin M. JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev. 1994 Dec 15;8(24):2996–3007. [PubMed]
  • Chang F, Herskowitz I. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell. 1990 Nov 30;63(5):999–1011. [PubMed]
  • Kranz JE, Satterberg B, Elion EA. The MAP kinase Fus3 associates with and phosphorylates the upstream signaling component Ste5. Genes Dev. 1994 Feb 1;8(3):313–327. [PubMed]
  • Cherkasova V, Lyons DM, Elion EA. Fus3p and Kss1p control G1 arrest in Saccharomyces cerevisiae through a balance of distinct arrest and proliferative functions that operate in parallel with Far1p. Genetics. 1999 Mar;151(3):989–1004. [PMC free article] [PubMed]
  • Choi KY, Satterberg B, Lyons DM, Elion EA. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell. 1994 Aug 12;78(3):499–512. [PubMed]
  • Leeuw T, Fourest-Lieuvin A, Wu C, Chenevert J, Clark K, Whiteway M, Thomas DY, Leberer E. Pheromone response in yeast: association of Bem1p with proteins of the MAP kinase cascade and actin. Science. 1995 Nov 17;270(5239):1210–1213. [PubMed]
  • Lyons DM, Mahanty SK, Choi KY, Manandhar M, Elion EA. The SH3-domain protein Bem1 coordinates mitogen-activated protein kinase cascade activation with cell cycle control in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Aug;16(8):4095–4106. [PMC free article] [PubMed]
  • Ciejek E, Thorner J. Recovery of S. cerevisiae a cells from G1 arrest by alpha factor pheromone requires endopeptidase action. Cell. 1979 Nov;18(3):623–635. [PubMed]
  • Lyons DM, Mahanty SK, Choi KY, Manandhar M, Elion EA. The SH3-domain protein Bem1 coordinates mitogen-activated protein kinase cascade activation with cell cycle control in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Aug;16(8):4095–4106. [PMC free article] [PubMed]
  • Cook JG, Bardwell L, Kron SJ, Thorner J. Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev. 1996 Nov 15;10(22):2831–2848. [PubMed]
  • McCaffrey G, Clay FJ, Kelsay K, Sprague GF., Jr Identification and regulation of a gene required for cell fusion during mating of the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1987 Aug;7(8):2680–2690. [PMC free article] [PubMed]
  • Dorer R, Pryciak PM, Hartwell LH. Saccharomyces cerevisiae cells execute a default pathway to select a mate in the absence of pheromone gradients. J Cell Biol. 1995 Nov;131(4):845–861. [PMC free article] [PubMed]
  • Moore SA. Comparison of dose-response curves for alpha factor-induced cell division arrest, agglutination, and projection formation of yeast cells. Implication for the mechanism of alpha factor action. J Biol Chem. 1983 Nov 25;258(22):13849–13856. [PubMed]
  • Dorer R, Boone C, Kimbrough T, Kim J, Hartwell LH. Genetic analysis of default mating behavior in Saccharomyces cerevisiae. Genetics. 1997 May;146(1):39–55. [PMC free article] [PubMed]
  • Neiman AM, Herskowitz I. Reconstitution of a yeast protein kinase cascade in vitro: activation of the yeast MEK homologue STE7 by STE11. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3398–3402. [PMC free article] [PubMed]
  • Elion EA. Ste5: a meeting place for MAP kinases and their associates. Trends Cell Biol. 1995 Aug;5(8):322–327. [PubMed]
  • Oehlen LJ, McKinney JD, Cross FR. Ste12 and Mcm1 regulate cell cycle-dependent transcription of FAR1. Mol Cell Biol. 1996 Jun;16(6):2830–2837. [PMC free article] [PubMed]
  • Elion EA, Warner JR. An RNA polymerase I enhancer in Saccharomyces cerevisiae. Mol Cell Biol. 1986 Jun;6(6):2089–2097. [PMC free article] [PubMed]
  • Peter M, Gartner A, Horecka J, Ammerer G, Herskowitz I. FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell. 1993 May 21;73(4):747–760. [PubMed]
  • Elion EA, Brill JA, Fink GR. Functional redundancy in the yeast cell cycle: FUS3 and KSS1 have both overlapping and unique functions. Cold Spring Harb Symp Quant Biol. 1991;56:41–49. [PubMed]
  • Tedford K, Kim S, Sa D, Stevens K, Tyers M. Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr Biol. 1997 Apr 1;7(4):228–238. [PubMed]
  • Trueheart J, Boeke JD, Fink GR. Two genes required for cell fusion during yeast conjugation: evidence for a pheromone-induced surface protein. Mol Cell Biol. 1987 Jul;7(7):2316–2328. [PMC free article] [PubMed]
  • Tyers M, Futcher B. Far1 and Fus3 link the mating pheromone signal transduction pathway to three G1-phase Cdc28 kinase complexes. Mol Cell Biol. 1993 Sep;13(9):5659–5669. [PMC free article] [PubMed]
  • Simon MN, De Virgilio C, Souza B, Pringle JR, Abo A, Reed SI. Role for the Rho-family GTPase Cdc42 in yeast mating-pheromone signal pathway. Nature. 1995 Aug 24;376(6542):702–705. [PubMed]
  • Valtz N, Peter M, Herskowitz I. FAR1 is required for oriented polarization of yeast cells in response to mating pheromones. J Cell Biol. 1995 Nov;131(4):863–873. [PMC free article] [PubMed]
  • Song D, Dolan JW, Yuan YL, Fields S. Pheromone-dependent phosphorylation of the yeast STE12 protein correlates with transcriptional activation. Genes Dev. 1991 May;5(5):741–750. [PubMed]
  • Zhang F, Strand A, Robbins D, Cobb MH, Goldsmith EJ. Atomic structure of the MAP kinase ERK2 at 2.3 A resolution. Nature. 1994 Feb 24;367(6465):704–711. [PubMed]
  • Zhou Z, Gartner A, Cade R, Ammerer G, Errede B. Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases. Mol Cell Biol. 1993 Apr;13(4):2069–2080. [PMC free article] [PubMed]
  • Stevenson BJ, Rhodes N, Errede B, Sprague GF., Jr Constitutive mutants of the protein kinase STE11 activate the yeast pheromone response pathway in the absence of the G protein. Genes Dev. 1992 Jul;6(7):1293–1304. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...