• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Jan 1999; 151(1): 221–238.
PMCID: PMC1460457

Inferring the fitness effects of DNA mutations from polymorphism and divergence data: statistical power to detect directional selection under stationarity and free recombination.

Abstract

The fitness effects of classes of DNA mutations can be inferred from patterns of nucleotide variation. A number of studies have attributed differences in levels of polymorphism and divergence between silent and replacement mutations to the action of natural selection. Here, I investigate the statistical power to detect directional selection through contrasts of DNA variation among functional categories of mutations. A variety of statistical approaches are applied to DNA data simulated under Sawyer and Hartl's Poisson random field model. Under assumptions of free recombination and stationarity, comparisons that include both the frequency distributions of mutations segregating within populations and the numbers of mutations fixed between populations have substantial power to detect even very weak selection. Frequency distribution and divergence tests are applied to silent and replacement mutations among five alleles of each of eight Drosophila simulans genes. Putatively "preferred" silent mutations segregate at higher frequencies and are more often fixed between species than "unpreferred" silent changes, suggesting fitness differences among synonymous codons. Amino acid changes tend to be either rare polymorphisms or fixed differences, consistent with a combination of deleterious and adaptive protein evolution. In these data, a substantial fraction of both silent and replacement DNA mutations appear to affect fitness.

Full Text

The Full Text of this article is available as a PDF (279K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bulmer M. The selection-mutation-drift theory of synonymous codon usage. Genetics. 1991 Nov;129(3):897–907. [PMC free article] [PubMed]
  • Charlesworth D, Charlesworth B, Morgan MT. The pattern of neutral molecular variation under the background selection model. Genetics. 1995 Dec;141(4):1619–1632. [PMC free article] [PubMed]
  • Dykhuizen DE, Hartl DL. Functional effects of PGI allozymes in Escherichia coli. Genetics. 1983 Sep;105(1):1–18. [PMC free article] [PubMed]
  • Eanes WF, Kirchner M, Yoon J. Evidence for adaptive evolution of the G6pd gene in the Drosophila melanogaster and Drosophila simulans lineages. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7475–7479. [PMC free article] [PubMed]
  • Eyre-Walker A. Differentiating between selection and mutation bias. Genetics. 1997 Dec;147(4):1983–1987. [PMC free article] [PubMed]
  • Fu YX. New statistical tests of neutrality for DNA samples from a population. Genetics. 1996 May;143(1):557–570. [PMC free article] [PubMed]
  • Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997 Oct;147(2):915–925. [PMC free article] [PubMed]
  • Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. [PMC free article] [PubMed]
  • Golding GB, Dean AM. The structural basis of molecular adaptation. Mol Biol Evol. 1998 Apr;15(4):355–369. [PubMed]
  • Goldman N. Simple diagnostic statistical tests of models for DNA substitution. J Mol Evol. 1993 Dec;37(6):650–661. [PubMed]
  • Goldman N, Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 1994 Sep;11(5):725–736. [PubMed]
  • Golding GB, Aquadro CF, Langley CH. Sequence evolution within populations under multiple types of mutation. Proc Natl Acad Sci U S A. 1986 Jan;83(2):427–431. [PMC free article] [PubMed]
  • Hartl DL, Moriyama EN, Sawyer SA. Selection intensity for codon bias. Genetics. 1994 Sep;138(1):227–234. [PMC free article] [PubMed]
  • Hey J. Mitochondrial and nuclear genes present conflicting portraits of human origins. Mol Biol Evol. 1997 Feb;14(2):166–172. [PubMed]
  • Akashi H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics. 1994 Mar;136(3):927–935. [PMC free article] [PubMed]
  • Akashi H. Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. Genetics. 1995 Feb;139(2):1067–1076. [PMC free article] [PubMed]
  • Hudson RR. Levels of DNA polymorphism and divergence yield important insights into evolutionary processes. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7425–7426. [PMC free article] [PubMed]
  • Akashi H. Molecular evolution between Drosophila melanogaster and D. simulans: reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster. Genetics. 1996 Nov;144(3):1297–1307. [PMC free article] [PubMed]
  • Hudson RR, Kreitman M, Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. [PMC free article] [PubMed]
  • Hudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992 Oct;132(2):583–589. [PMC free article] [PubMed]
  • Akashi H. Distinguishing the effects of mutational biases and natural selection on DNA sequence variation. Genetics. 1997 Dec;147(4):1989–1991. [PMC free article] [PubMed]
  • Hudson RR, Bailey K, Skarecky D, Kwiatowski J, Ayala FJ. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. [PMC free article] [PubMed]
  • Akashi H, Schaeffer SW. Natural selection and the frequency distributions of "silent" DNA polymorphism in Drosophila. Genetics. 1997 May;146(1):295–307. [PMC free article] [PubMed]
  • Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol. 1985 Jan;2(1):13–34. [PubMed]
  • Andersson SG, Kurland CG. Codon preferences in free-living microorganisms. Microbiol Rev. 1990 Jun;54(2):198–210. [PMC free article] [PubMed]
  • Ballard JW, Kreitman M. Unraveling selection in the mitochondrial genome of Drosophila. Genetics. 1994 Nov;138(3):757–772. [PMC free article] [PubMed]
  • Karotam J, Boyce TM, Oakeshott JG. Nucleotide variation at the hypervariable esterase 6 isozyme locus of Drosophila simulans. Mol Biol Evol. 1995 Jan;12(1):113–122. [PubMed]
  • Braverman JM, Hudson RR, Kaplan NL, Langley CH, Stephan W. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics. 1995 Jun;140(2):783–796. [PMC free article] [PubMed]
  • Kelly JK. A test of neutrality based on interlocus associations. Genetics. 1997 Jul;146(3):1197–1206. [PMC free article] [PubMed]
  • KIMURA M. On the probability of fixation of mutant genes in a population. Genetics. 1962 Jun;47:713–719. [PMC free article] [PubMed]
  • Rzhetsky A, Nei M. Tests of applicability of several substitution models for DNA sequence data. Mol Biol Evol. 1995 Jan;12(1):131–151. [PubMed]
  • Kimura M, Ota T. Protein polymorphism as a phase of molecular evolution. Nature. 1971 Feb 12;229(5285):467–469. [PubMed]
  • Sawyer SA, Hartl DL. Population genetics of polymorphism and divergence. Genetics. 1992 Dec;132(4):1161–1176. [PMC free article] [PubMed]
  • King LM. The role of gene conversion in determining sequence variation and divergence in the Est-5 gene family in Drosophila pseudoobscura. Genetics. 1998 Jan;148(1):305–315. [PMC free article] [PubMed]
  • Sawyer SA, Dykhuizen DE, Hartl DL. Confidence interval for the number of selectively neutral amino acid polymorphisms. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6225–6228. [PMC free article] [PubMed]
  • Kliman RM, Hey J. Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol. 1993 Nov;10(6):1239–1258. [PubMed]
  • Kliman RM, Hey J. The effects of mutation and natural selection on codon bias in the genes of Drosophila. Genetics. 1994 Aug;137(4):1049–1056. [PMC free article] [PubMed]
  • Sharp PM, Li WH. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol. 1986;24(1-2):28–38. [PubMed]
  • Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. [PubMed]
  • Sharp PM, Li WH. On the rate of DNA sequence evolution in Drosophila. J Mol Evol. 1989 May;28(5):398–402. [PubMed]
  • Sharp PM, Averof M, Lloyd AT, Matassi G, Peden JF. DNA sequence evolution: the sounds of silence. Philos Trans R Soc Lond B Biol Sci. 1995 Sep 29;349(1329):241–247. [PubMed]
  • Shields DC, Sharp PM, Higgins DG, Wright F. "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol. 1988 Nov;5(6):704–716. [PubMed]
  • Long M, Langley CH. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science. 1993 Apr 2;260(5104):91–95. [PubMed]
  • Simonsen KL, Churchill GA, Aquadro CF. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics. 1995 Sep;141(1):413–429. [PMC free article] [PubMed]
  • McDonald JH. Detecting non-neutral heterogeneity across a region of DNA sequence in the ratio of polymorphism to divergence. Mol Biol Evol. 1996 Jan;13(1):253–260. [PubMed]
  • Strobeck C. Average number of nucleotide differences in a sample from a single subpopulation: a test for population subdivision. Genetics. 1987 Sep;117(1):149–153. [PMC free article] [PubMed]
  • McDonald JH. Improved tests for heterogeneity across a region of DNA sequence in the ratio of polymorphism to divergence. Mol Biol Evol. 1998 Apr;15(4):377–384. [PubMed]
  • SUEOKA N. On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci U S A. 1962 Apr 15;48:582–592. [PMC free article] [PubMed]
  • McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. [PubMed]
  • Sueoka N. Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2653–2657. [PMC free article] [PubMed]
  • Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. [PMC free article] [PubMed]
  • Moriyama EN, Hartl DL. Codon usage bias and base composition of nuclear genes in Drosophila. Genetics. 1993 Jul;134(3):847–858. [PMC free article] [PubMed]
  • Takahata N. Neutral theory of molecular evolution. Curr Opin Genet Dev. 1996 Dec;6(6):767–772. [PubMed]
  • Moriyama EN, Powell JR. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. [PubMed]
  • Moriyama EN, Powell JR. Codon usage bias and tRNA abundance in Drosophila. J Mol Evol. 1997 Nov;45(5):514–523. [PubMed]
  • Thorne JL, Goldman N, Jones DT. Combining protein evolution and secondary structure. Mol Biol Evol. 1996 May;13(5):666–673. [PubMed]
  • Nachman MW. Deleterious mutations in animal mitochondrial DNA. Genetica. 1998;102-103(1-6):61–69. [PubMed]
  • Wayne ML, Contamine D, Kreitman M. Molecular population genetics of ref(2)P, a locus which confers viral resistance in Drosophila. Mol Biol Evol. 1996 Jan;13(1):191–199. [PubMed]
  • Wise CA, Sraml M, Easteal S. Departure from neutrality at the mitochondrial NADH dehydrogenase subunit 2 gene in humans, but not in chimpanzees. Genetics. 1998 Jan;148(1):409–421. [PMC free article] [PubMed]
  • Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. [PubMed]
  • Yang Z, Kumar S, Nei M. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics. 1995 Dec;141(4):1641–1650. [PMC free article] [PubMed]
  • Nielsen R, Yang Z. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics. 1998 Mar;148(3):929–936. [PMC free article] [PubMed]
  • Yokoyama S. Molecular genetic basis of adaptive selection: examples from color vision in vertebrates. Annu Rev Genet. 1997;31:315–336. [PubMed]
  • Ohta T. Slightly deleterious mutant substitutions in evolution. Nature. 1973 Nov 9;246(5428):96–98. [PubMed]
  • Zhang J, Kumar S. Detection of convergent and parallel evolution at the amino acid sequence level. Mol Biol Evol. 1997 May;14(5):527–536. [PubMed]
  • Ohta T. Amino acid substitution at the Adh locus of Drosophila is facilitated by small population size. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4548–4551. [PMC free article] [PubMed]
  • Zhang J, Nei M. Accuracies of ancestral amino acid sequences inferred by the parsimony, likelihood, and distance methods. J Mol Evol. 1997;44 (Suppl 1):S139–S146. [PubMed]
  • Perutz MF. Species adaptation in a protein molecule. Mol Biol Evol. 1983 Dec;1(1):1–28. [PubMed]
  • Powell JR, Moriyama EN. Evolution of codon usage bias in Drosophila. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7784–7790. [PMC free article] [PubMed]
  • Rand DM, Dorfsman M, Kann LM. Neutral and non-neutral evolution of Drosophila mitochondrial DNA. Genetics. 1994 Nov;138(3):741–756. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...