Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. 1999 Jan; 151(1): 119–129.
PMCID: PMC1460455

The rate of spontaneous mutation for life-history traits in Caenorhabditis elegans.


Spontaneous mutations were accumulated in 100 replicate lines of Caenorhabditis elegans over a period of approximately 50 generations. Periodic assays of these lines and comparison to a frozen control suggest that the deleterious mutation rate for typical life-history characters in this species is at least 0.05 per diploid genome per generation, with the average mutational effect on the order of 14% or less in the homozygous state and the average mutational heritability approximately 0.0034. While the average mutation rate per character and the average mutational heritability for this species are somewhat lower than previous estimates for Drosophila, these differences can be reconciled to a large extent when the biological differences between these species are taken into consideration.

Full Text

The Full Text of this article is available as a PDF (174K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bürger R, Lynch M. Adaptation and extinction in changing environments. EXS. 1997;83:209–239. [PubMed]
  • Charlesworth B. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet Res. 1990 Jun;55(3):199–221. [PubMed]
  • Charlesworth B. The effect of synergistic epistasis on the inbreeding load. Genet Res. 1998 Feb;71(1):85–89. [PubMed]
  • Kondrashov AS. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. [PubMed]
  • Kondrashov AS, Crow JF. Haploidy or diploidy: which is better? Nature. 1991 May 23;351(6324):314–315. [PubMed]
  • Lande R. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet Res. 1975 Dec;26(3):221–235. [PubMed]
  • Drake JW, Charlesworth B, Charlesworth D, Crow JF. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. [PMC free article] [PubMed]
  • Eide D, Anderson P. The gene structures of spontaneous mutations affecting a Caenorhabditis elegans myosin heavy chain gene. Genetics. 1985 Jan;109(1):67–79. [PMC free article] [PubMed]
  • Lynch M. The rate of polygenic mutation. Genet Res. 1988 Apr;51(2):137–148. [PubMed]
  • Fernández J, López-Fanjul C. Spontaneous mutational variances and covariances for fitness-related traits in Drosophila melanogaster. Genetics. 1996 Jun;143(2):829–837. [PMC free article] [PubMed]
  • Greenwald IS, Horvitz HR. unc-93(e1500): A behavioral mutant of Caenorhabditis elegans that defines a gene with a wild-type null phenotype. Genetics. 1980 Sep;96(1):147–164. [PMC free article] [PubMed]
  • Guo XD, Johnson JJ, Kramer JM. Embryonic lethality caused by mutations in basement membrane collagen of C. elegans. Nature. 1991 Feb 21;349(6311):707–709. [PubMed]
  • Hamilton WD. The moulding of senescence by natural selection. J Theor Biol. 1966 Sep;12(1):12–45. [PubMed]
  • Hill WG. Rates of change in quantitative traits from fixation of new mutations. Proc Natl Acad Sci U S A. 1982 Jan;79(1):142–145. [PMC free article] [PubMed]
  • McKim KS, Starr T, Rose AM. Genetic and molecular analysis of the dpy-14 region in Caenorhabditis elegans. Mol Gen Genet. 1992 May;233(1-2):241–251. [PubMed]
  • Mukai T, Chigusa SI, Mettler LE, Crow JF. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. [PMC free article] [PubMed]
  • Hodgkin J, Barnes TM. More is not better: brood size and population growth in a self-fertilizing nematode. Proc Biol Sci. 1991 Oct 22;246(1315):19–24. [PubMed]
  • Nuzhdin SV, Mackay TF. The genomic rate of transposable element movement in Drosophila melanogaster. Mol Biol Evol. 1995 Jan;12(1):180–181. [PubMed]
  • Hodgkin J, Plasterk RH, Waterston RH. The nematode Caenorhabditis elegans and its genome. Science. 1995 Oct 20;270(5235):410–414. [PubMed]
  • Pletcher SD, Houle D, Curtsinger JW. Age-specific properties of spontaneous mutations affecting mortality in Drosophila melanogaster. Genetics. 1998 Jan;148(1):287–303. [PMC free article] [PubMed]
  • Houle D, Morikawa B, Lynch M. Comparing mutational variabilities. Genetics. 1996 Jul;143(3):1467–1483. [PMC free article] [PubMed]
  • Houle D, Hughes KA, Assimacopoulos S, Charlesworth B. The effects of spontaneous mutation on quantitative traits. II. Dominance of mutations with effects on life-history traits. Genet Res. 1997 Aug;70(1):27–34. [PubMed]
  • Johnston MO, Schoen DJ. Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science. 1995 Jan 13;267(5195):226–229. [PubMed]
  • Keightley PD. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 1994 Dec;138(4):1315–1322. [PMC free article] [PubMed]
  • Shabalina SA, Yampolsky LYu, Kondrashov AS. Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13034–13039. [PMC free article] [PubMed]
  • Keightley PD. Nature of deleterious mutation load in Drosophila. Genetics. 1996 Dec;144(4):1993–1999. [PMC free article] [PubMed]
  • Keightley PD, Caballero A. Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3823–3827. [PMC free article] [PubMed]
  • Sibley MH, Graham PL, von Mende N, Kramer JM. Mutations in the alpha 2(IV) basement membrane collagen gene of Caenorhabditis elegans produce phenotypes of differing severities. EMBO J. 1994 Jul 15;13(14):3278–3285. [PMC free article] [PubMed]
  • Kibota TT, Lynch M. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature. 1996 Jun 20;381(6584):694–696. [PubMed]
  • Simmons MJ, Crow JF. Mutations affecting fitness in Drosophila populations. Annu Rev Genet. 1977;11:49–78. [PubMed]
  • Wayne ML, Mackay TF. Quantitative genetics of ovariole number in Drosophila melanogaster. II. Mutational variation and genotype-environment interaction. Genetics. 1998 Jan;148(1):201–210. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...