• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Nov 1998; 150(3): 1245–1256.
PMCID: PMC1460386

Extreme structural heterogeneity among the members of a maize retrotransposon family.


A few families of retrotransposons characterized by the presence of long terminal repeats (LTRs) have amplified relatively recently in maize and account for >50% of the genome. Surprisingly, none of these elements have been shown to cause a single mutation. In contrast, most of the retrotransposon-induced mutations isolated in maize are caused by the insertion of elements that are present in the genome at 2-50 copies. To begin to understand what limits the amplification of this mutagenic class of LTR-retrotransposons, we are focusing on five elements previously identified among 17 mutations of the maize waxy gene. One of these elements, Stonor, has sustained a deletion of the entire gag region and part of the protease domain. Missing sequences were recovered from larger members of the Stonor family and indicate that the deletion probably occurred during retrotransposition. These large elements have an exceptionally long leader of 2 kb that includes a highly variable region of approximately 1 kb that has not been seen in previously characterized retrotransposons. This region serves to distinguish each member of the Stonor family and indicates that no single element has yet evolved that can attain the very high copy numbers characteristic of other element families in maize.

Full Text

The Full Text of this article is available as a PDF (706K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bureau TE, White SE, Wessler SR. Transduction of a cellular gene by a plant retroelement. Cell. 1994 May 20;77(4):479–480. [PubMed]
  • Damiani RD, Jr, Wessler SR. An upstream open reading frame represses expression of Lc, a member of the R/B family of maize transcriptional activators. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8244–8248. [PMC free article] [PubMed]
  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A. Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res. 1992 Jul 25;20(14):3639–3644. [PMC free article] [PubMed]
  • Ghosh HP, Ghosh K, Simsek M, RajBhandary UL. Nucleotide sequence of wheat germ cytoplasmic initiator methionine transfer ribonucleic acid. Nucleic Acids Res. 1982 May 25;10(10):3241–3247. [PMC free article] [PubMed]
  • Hirochika H, Hirochika R. Ty1-copia group retrotransposons as ubiquitous components of plant genomes. Jpn J Genet. 1993 Feb;68(1):35–46. [PubMed]
  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7783–7788. [PMC free article] [PubMed]
  • Jin YK, Bennetzen JL. Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. Plant Cell. 1994 Aug;6(8):1177–1186. [PMC free article] [PubMed]
  • Johns MA, Mottinger J, Freeling M. A low copy number, copia-like transposon in maize. EMBO J. 1985 May;4(5):1093–1101. [PMC free article] [PubMed]
  • Kaminski A, Hunt SL, Gibbs CL, Jackson RJ. Internal initiation of mRNA translation in eukaryotes. Genet Eng (N Y) 1994;16:115–155. [PubMed]
  • Lauermann V, Boeke JD. The primer tRNA sequence is not inherited during Ty1 retrotransposition. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9847–9851. [PMC free article] [PubMed]
  • Nalbantoglu J, Hartley D, Phear G, Tear G, Meuth M. Spontaneous deletion formation at the aprt locus of hamster cells: the presence of short sequence homologies and dyad symmetries at deletion termini. EMBO J. 1986 Jun;5(6):1199–1204. [PMC free article] [PubMed]
  • Pulsinelli GA, Temin HM. Characterization of large deletions occurring during a single round of retrovirus vector replication: novel deletion mechanism involving errors in strand transfer. J Virol. 1991 Sep;65(9):4786–4797. [PMC free article] [PubMed]
  • Purugganan MD, Wessler SR. Molecular evolution of magellan, a maize Ty3/gypsy-like retrotransposon. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11674–11678. [PMC free article] [PubMed]
  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdomènech P. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell. 1995 Apr;7(4):407–416. [PMC free article] [PubMed]
  • Suoniemi A, Anamthawat-Jónsson K, Arna T, Schulman AH. Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol Biol. 1996 Mar;30(6):1321–1329. [PubMed]
  • Voytas DF, Cummings MP, Koniczny A, Ausubel FM, Rodermel SR. copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7124–7128. [PMC free article] [PubMed]
  • Suoniemi A, Narvanto A, Schulman AH. The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol. 1996 May;31(2):295–306. [PubMed]
  • Suoniemi A, Schmidt D, Schulman AH. BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites. Genetica. 1997;100(1-3):219–230. [PubMed]
  • Swain A, Coffin JM. Mechanism of transduction by retroviruses. Science. 1992 Feb 14;255(5046):841–845. [PubMed]
  • Zhang J, Temin HM. Rate and mechanism of nonhomologous recombination during a single cycle of retroviral replication. Science. 1993 Jan 8;259(5092):234–238. [PubMed]
  • Temin HM. Retrovirus variation and reverse transcription: abnormal strand transfers result in retrovirus genetic variation. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6900–6903. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • Nucleotide
    Published Nucleotide sequences
  • Protein
    Published protein sequences
  • PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...