• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Jun 1998; 149(2): 1069–1080.
PMCID: PMC1460207

Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs.

Abstract

A quantitative trait locus (QTL) analysis of growth and fatness data from a three generation pig experiment is presented. The population of 199 F2 animals was derived from a cross between wild boar and Large White pigs. Animals were typed for 240 markers spanning 23 Morgans of 18 autosomes and the X chromosome. A series of analyses are presented within a least squares framework. First, these identify chromosomes containing loci controlling trait variation and subsequently attempt to map QTLs to locations within chromosomes. This population gives evidence for a large QTL affecting back fat and another for abdominal fat segregating on chromosome 4. The best locations for these QTLs are within 4 cM of each other and, hence, this is likely to be a single QTL affecting both traits. The allele inherited from the wild boar causes an increase in fat deposition. A QTL for intestinal length was also located in the same region on chromosome 4 and could be the same QTL with pleiotropic effects. Significant effects, owing to multiple QTLs, for intestinal length were identified on chromosomes 3 and 5. A single QTL affecting growth rate to 30 kg was located on chromosome 13 such that the Large White allele increased early growth rate, another QTL on chromosome 10 affected growth rate from 30 to 70 kg and another on chromosome 4 affected growth rate to 70 kg.

Full Text

The Full Text of this article is available as a PDF (137K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Andersson L, Haley CS, Ellegren H, Knott SA, Johansson M, Andersson K, Andersson-Eklund L, Edfors-Lilja I, Fredholm M, Hansson I, et al. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science. 1994 Mar 25;263(5154):1771–1774. [PubMed]
  • Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. [PMC free article] [PubMed]
  • Clément K, Vaisse C, Manning BS, Basdevant A, Guy-Grand B, Ruiz J, Silver KD, Shuldiner AR, Froguel P, Strosberg AD. Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med. 1995 Aug 10;333(6):352–354. [PubMed]
  • Dériaz O, Dionne F, Pérusse L, Tremblay A, Vohl MC, Côté G, Bouchard C. DNA variation in the genes of the Na,K-adenosine triphosphatase and its relation with resting metabolic rate, respiratory quotient, and body fat. J Clin Invest. 1994 Feb;93(2):838–843. [PMC free article] [PubMed]
  • Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O'Brien PJ, MacLennan DH. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science. 1991 Jul 26;253(5018):448–451. [PubMed]
  • Georges M, Nielsen D, Mackinnon M, Mishra A, Okimoto R, Pasquino AT, Sargeant LS, Sorensen A, Steele MR, Zhao X, et al. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics. 1995 Feb;139(2):907–920. [PMC free article] [PubMed]
  • Haley CS, Knott SA. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. [PubMed]
  • Haley CS, Knott SA, Elsen JM. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics. 1994 Mar;136(3):1195–1207. [PMC free article] [PubMed]
  • Jansen RC. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. [PMC free article] [PubMed]
  • Jiang C, Zeng ZB. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics. 1995 Jul;140(3):1111–1127. [PMC free article] [PubMed]
  • Visscher PM, Thompson R, Haley CS. Confidence intervals in QTL mapping by bootstrapping. Genetics. 1996 Jun;143(2):1013–1020. [PMC free article] [PubMed]
  • Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995 Nov;11(3):241–247. [PubMed]
  • Marklund L, Johansson Moller M, Høyheim B, Davies W, Fredholm M, Juneja RK, Mariani P, Coppieters W, Ellegren H, Andersson L. A comprehensive linkage map of the pig based on a wild pig-Large White intercross. Anim Genet. 1996 Aug;27(4):255–269. [PubMed]
  • Rettenberger G, Klett C, Zechner U, Kunz J, Vogel W, Hameister H. Visualization of the conservation of synteny between humans and pigs by heterologous chromosomal painting. Genomics. 1995 Mar 20;26(2):372–378. [PubMed]
  • Yu TP, Tuggle CK, Schmitz CB, Rothschild MF. Association of PIT1 polymorphisms with growth and carcass traits in pigs. J Anim Sci. 1995 May;73(5):1282–1288. [PubMed]
  • Zeng ZB. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • Gene
    Gene
    Gene links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...