• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Mar 1998; 148(3): 1295–1310.
PMCID: PMC1460030

Suppressors of an Arabidopsis thaliana phyB mutation identify genes that control light signaling and hypocotyl elongation.

Abstract

Ambient light controls the development and physiology of plants. The Arabidopsis thaliana photoreceptor phytochrome B (PHYB) regulates developmental light responses at both seedling and adult stages. To identify genes that mediate control of development by light, we screened for suppressors of the long hypocotyl phenotype caused by a phyB mutation. Genetic analyses show that the shy (short hypocotyl) mutations we have isolated fall in several loci. Phenotypes of the mutants suggest that some of the genes identified have functions in control of light responses. Other loci specifically affect cell elongation or expansion.

Full Text

The Full Text of this article is available as a PDF (328K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ahmad M, Cashmore AR. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J. 1997 Mar;11(3):421–427. [PubMed]
  • Ang LH, Deng XW. Regulatory hierarchy of photomorphogenic loci: allele-specific and light-dependent interaction between the HY5 and COP1 loci. Plant Cell. 1994 May;6(5):613–628. [PMC free article] [PubMed]
  • Aukerman MJ, Hirschfeld M, Wester L, Weaver M, Clack T, Amasino RM, Sharrock RA. A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell. 1997 Aug;9(8):1317–1326. [PMC free article] [PubMed]
  • Bagnall DJ, King RW, Whitelam GC, Boylan MT, Wagner D, Quail PH. Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1995 Aug;108(4):1495–1503. [PMC free article] [PubMed]
  • Barnes SA, Quaggio RB, Whitelam GC, Chua NH. fhy1 defines a branch point in phytochrome A signal transduction pathways for gene expression. Plant J. 1996 Dec;10(6):1155–1161. [PubMed]
  • Bell CJ, Ecker JR. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. [PubMed]
  • Botto JF, Sanchez RA, Whitelam GC, Casal JJ. Phytochrome A Mediates the Promotion of Seed Germination by Very Low Fluences of Light and Canopy Shade Light in Arabidopsis. Plant Physiol. 1996 Feb;110(2):439–444. [PMC free article] [PubMed]
  • Bowler C, Yamagata H, Neuhaus G, Chua NH. Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Dev. 1994 Sep 15;8(18):2188–2202. [PubMed]
  • Carol P, Peng J, Harberd NP. Isolation and preliminary characterization of gas1-1, a mutation causing partial suppression of the phenotype conferred by the gibberellin-insensitive (gai) mutation in Arabidopsis thaliana (L.) Heyhn. Planta. 1995;197(2):414–417. [PubMed]
  • Casal JJ, Boccalandro H. Co-action between phytochrome B and HY4 in Arabidopsis thaliana. Planta. 1995;197(2):213–218. [PubMed]
  • Cernac A, Lincoln C, Lammer D, Estelle M. The SAR1 gene of Arabidopsis acts downstream of the AXR1 gene in auxin response. Development. 1997 Apr;124(8):1583–1591. [PubMed]
  • Chamovitz DA, Wei N, Osterlund MT, von Arnim AG, Staub JM, Matsui M, Deng XW. The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Cell. 1996 Jul 12;86(1):115–121. [PubMed]
  • Chory J, Peto C, Feinbaum R, Pratt L, Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989 Sep 8;58(5):991–999. [PubMed]
  • Chory J, Peto CA. Mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and chloroplast development in Arabidopsis. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8776–8780. [PMC free article] [PubMed]
  • Chory J, Nagpal P, Peto CA. Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. Plant Cell. 1991 May;3(5):445–459. [PMC free article] [PubMed]
  • Chory J, Reinecke D, Sim S, Washburn T, Brenner M. A Role for Cytokinins in De-Etiolation in Arabidopsis (det Mutants Have an Altered Response to Cytokinins). Plant Physiol. 1994 Feb;104(2):339–347. [PMC free article] [PubMed]
  • Clack T, Mathews S, Sharrock RA. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol. 1994 Jun;25(3):413–427. [PubMed]
  • Ahmad M, Cashmore AR. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 1993 Nov 11;366(6451):162–166. [PubMed]
  • Clouse SD, Langford M, McMorris TC. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 1996 Jul;111(3):671–678. [PMC free article] [PubMed]
  • Dehesh K, Franci C, Parks BM, Seeley KA, Short TW, Tepperman JM, Quail PH. Arabidopsis HY8 locus encodes phytochrome A. Plant Cell. 1993 Sep;5(9):1081–1088. [PMC free article] [PubMed]
  • Nagatani A, Reed JW, Chory J. Isolation and Initial Characterization of Arabidopsis Mutants That Are Deficient in Phytochrome A. Plant Physiol. 1993 May;102(1):269–277. [PMC free article] [PubMed]
  • Desnos T, Orbović V, Bellini C, Kronenberger J, Caboche M, Traas J, Höfte H. Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark- and light-grown Arabidopsis seedlings. Development. 1996 Feb;122(2):683–693. [PubMed]
  • Neuhaus G, Bowler C, Kern R, Chua NH. Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell. 1993 Jun 4;73(5):937–952. [PubMed]
  • Fankhauser C, Chory J. Light control of plant development. Annu Rev Cell Dev Biol. 1997;13:203–229. [PubMed]
  • Niyogi KK, Last RL, Fink GR, Keith B. Suppressors of trp1 fluorescence identify a new arabidopsis gene, TRP4, encoding the anthranilate synthase beta subunit. Plant Cell. 1993 Sep;5(9):1011–1027. [PMC free article] [PubMed]
  • Oyama T, Shimura Y, Okada K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev. 1997 Nov 15;11(22):2983–2995. [PMC free article] [PubMed]
  • Parks BM, Quail PH. hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell. 1993 Jan;5(1):39–48. [PMC free article] [PubMed]
  • Hauser MT, Morikami A, Benfey PN. Conditional root expansion mutants of Arabidopsis. Development. 1995 Apr;121(4):1237–1252. [PubMed]
  • Pepper A, Delaney T, Washburn T, Poole D, Chory J. DET1, a negative regulator of light-mediated development and gene expression in arabidopsis, encodes a novel nuclear-localized protein. Cell. 1994 Jul 15;78(1):109–116. [PubMed]
  • Johnson E, Bradley M, Harberd NP, Whitelam GC. Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions). Plant Physiol. 1994 May;105(1):141–149. [PMC free article] [PubMed]
  • Quail PH. Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu Rev Genet. 1991;25:389–409. [PubMed]
  • Quail PH, Briggs WR, Chory J, Hangarter RP, Harberd NP, Kendrick RE, Koornneef M, Parks B, Sharrock RA, Schafer E, et al. Spotlight on Phytochrome Nomenclature. Plant Cell. 1994 Apr;6(4):468–471. [PMC free article] [PubMed]
  • Karim FD, Chang HC, Therrien M, Wassarman DA, Laverty T, Rubin GM. A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics. 1996 May;143(1):315–329. [PMC free article] [PubMed]
  • Reed JW, Chory J. Mutational analyses of light-controlled seedling development in Arabidopsis. Semin Cell Biol. 1994 Oct;5(5):327–334. [PubMed]
  • Kim BC, Soh MC, Kang BJ, Furuya M, Nam HG. Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2. Plant J. 1996 Apr;9(4):441–456. [PubMed]
  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. [PMC free article] [PubMed]
  • Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. [PubMed]
  • Reed JW, Nagatani A, Elich TD, Fagan M, Chory J. Phytochrome A and Phytochrome B Have Overlapping but Distinct Functions in Arabidopsis Development. Plant Physiol. 1994 Apr;104(4):1139–1149. [PMC free article] [PubMed]
  • Sakamoto K, Nagatani A. Nuclear localization activity of phytochrome B. Plant J. 1996 Nov;10(5):859–868. [PubMed]
  • Schneider K, Wells B, Dolan L, Roberts K. Structural and genetic analysis of epidermal cell differentiation in Arabidopsis primary roots. Development. 1997 May;124(9):1789–1798. [PubMed]
  • Sharrock RA, Quail PH. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 1989 Nov;3(11):1745–1757. [PubMed]
  • Shinomura T, Nagatani A, Chory J, Furuya M. The Induction of Seed Germination in Arabidopsis thaliana Is Regulated Principally by Phytochrome B and Secondarily by Phytochrome A. Plant Physiol. 1994 Feb;104(2):363–371. [PMC free article] [PubMed]
  • Leyser HM, Pickett FB, Dharmasiri S, Estelle M. Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J. 1996 Sep;10(3):403–413. [PubMed]
  • Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8129–8133. [PMC free article] [PubMed]
  • Li HM, Altschmied L, Chory J. Arabidopsis mutants define downstream branches in the phototransduction pathway. Genes Dev. 1994 Feb 1;8(3):339–349. [PubMed]
  • Li J, Nagpal P, Vitart V, McMorris TC, Chory J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science. 1996 Apr 19;272(5260):398–401. [PubMed]
  • Lin Y, Cheng CL. A chlorate-resistant mutant defective in the regulation of nitrate reductase gene expression in Arabidopsis defines a new HY locus. Plant Cell. 1997 Jan;9(1):21–35. [PMC free article] [PubMed]
  • Lincoln C, Britton JH, Estelle M. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell. 1990 Nov;2(11):1071–1080. [PMC free article] [PubMed]
  • Staub JM, Wei N, Deng XW. Evidence for FUS6 as a component of the nuclear-localized COP9 complex in Arabidopsis. Plant Cell. 1996 Nov;8(11):2047–2056. [PMC free article] [PubMed]
  • Wei N, Kwok SF, von Arnim AG, Lee A, McNellis TW, Piekos B, Deng XW. Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell. 1994 May;6(5):629–643. [PMC free article] [PubMed]
  • Takahashi T, Gasch A, Nishizawa N, Chua NH. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev. 1995 Jan 1;9(1):97–107. [PubMed]
  • Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell. 1993 Jul;5(7):757–768. [PMC free article] [PubMed]
  • von Arnim AG, Deng XW. Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell. 1994 Dec 16;79(6):1035–1045. [PubMed]
  • Von Arnim Albrecht, Deng Xing-Wang. LIGHT CONTROL OF SEEDLING DEVELOPMENT. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):215–243. [PubMed]
  • Wagner D, Hoecker U, Quail PH. RED1 is necessary for phytochrome B-mediated red light-specific signal transduction in Arabidopsis. Plant Cell. 1997 May;9(5):731–743. [PMC free article] [PubMed]
  • Wei N, Chamovitz DA, Deng XW. Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell. 1994 Jul 15;78(1):117–124. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...