• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Jan 1998; 148(1): 59–70.
PMCID: PMC1459773

Evidence for independent mismatch repair processing on opposite sides of a double-strand break in Saccharomyces cerevisiae.


Double-strand break (DSB) induced gene conversion in Saccharomyces cerevisiae during meiosis and MAT switching is mediated primarily by mismatch repair of heteroduplex DNA (hDNA). We used nontandem ura3 duplications containing palindromic frameshift insertion mutations near an HO nuclease recognition site to test whether mismatch repair also mediates DSB-induced mitotic gene conversion at a non-MAT locus. Palindromic insertions included in hDNA are expected to produce a stem-loop mismatch, escape repair, and segregate to produce a sectored (Ura+/-) colony. If conversion occurs by gap repair, the insertion should be removed on both strands, and converted colonies will not be sectored. For both a 14-bp palindrome, and a 37-bp near-palindrome, approximately 75% of recombinant colonies were sectored, indicating that most DSB-induced mitotic gene conversion involves mismatch repair of hDNA. We also investigated mismatch repair of well-repaired markers flanking an unrepaired palindrome. As seen in previous studies, these additional markers increased loop repair (likely reflecting corepair). Among sectored products, few had additional segregating markers, indicating that the lack of repair at one marker is not associated with inefficient repair at nearby markers. Clear evidence was obtained for low levels of short tract mismatch repair. As seen with full gene conversions, donor alleles in sectored products were not altered. Markers on the same side of the DSB as the palindrome were involved in hDNA less often among sectored products than nonsectored products, but markers on the opposite side of the DSB showed similar hDNA involvement among both product classes. These results can be explained in terms of corepair, and they suggest that mismatch repair on opposite sides of a DSB involves distinct repair tracts.

Full Text

The Full Text of this article is available as a PDF (140K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aguilera A, Klein HL. Yeast intrachromosomal recombination: long gene conversion tracts are preferentially associated with reciprocal exchange and require the RAD1 and RAD3 gene products. Genetics. 1989 Dec;123(4):683–694. [PMC free article] [PubMed]
  • Ahn BY, Livingston DM. Mitotic gene conversion lengths, coconversion patterns, and the incidence of reciprocal recombination in a Saccharomyces cerevisiae plasmid system. Mol Cell Biol. 1986 Nov;6(11):3685–3693. [PMC free article] [PubMed]
  • Alani E. The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Mol Cell Biol. 1996 Oct;16(10):5604–5615. [PMC free article] [PubMed]
  • Alani E, Chi NW, Kolodner R. The Saccharomyces cerevisiae Msh2 protein specifically binds to duplex oligonucleotides containing mismatched DNA base pairs and insertions. Genes Dev. 1995 Jan 15;9(2):234–247. [PubMed]
  • Belmaaza A, Chartrand P. One-sided invasion events in homologous recombination at double-strand breaks. Mutat Res. 1994 May;314(3):199–208. [PubMed]
  • Bianchi ME, Radding CM. Insertions, deletions and mismatches in heteroduplex DNA made by recA protein. Cell. 1983 Dec;35(2 Pt 1):511–520. [PubMed]
  • Borts RH, Haber JE. Meiotic recombination in yeast: alteration by multiple heterozygosities. Science. 1987 Sep 18;237(4821):1459–1465. [PubMed]
  • Borts RH, Haber JE. Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics. 1989 Sep;123(1):69–80. [PMC free article] [PubMed]
  • Cao L, Alani E, Kleckner N. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell. 1990 Jun 15;61(6):1089–1101. [PubMed]
  • de Massy B, Rocco V, Nicolas A. The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. EMBO J. 1995 Sep 15;14(18):4589–4598. [PMC free article] [PubMed]
  • Detloff P, Petes TD. Measurements of excision repair tracts formed during meiotic recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Apr;12(4):1805–1814. [PMC free article] [PubMed]
  • Detloff P, White MA, Petes TD. Analysis of a gene conversion gradient at the HIS4 locus in Saccharomyces cerevisiae. Genetics. 1992 Sep;132(1):113–123. [PMC free article] [PubMed]
  • Esposito MS. Evidence that spontaneous mitotic recombination occurs at the two-strand stage. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4436–4440. [PMC free article] [PubMed]
  • Esposito MS, Ramirez RM, Bruschi CV. Recombinators, recombinases and recombination genes of yeasts. Curr Genet. 1994 Jan;25(1):1–11. [PubMed]
  • Fishman-Lobell J, Haber JE. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science. 1992 Oct 16;258(5081):480–484. [PubMed]
  • Gilbertson LA, Stahl FW. A test of the double-strand break repair model for meiotic recombination in Saccharomyces cerevisiae. Genetics. 1996 Sep;144(1):27–41. [PMC free article] [PubMed]
  • Gunn L, Whelden J, Nickoloff JA. Transfer of episomal and integrated plasmids from Saccharomyces cerevisiae to Escherichia coli by electroporation. Methods Mol Biol. 1995;47:55–66. [PubMed]
  • Haber JE, Ray BL, Kolb JM, White CI. Rapid kinetics of mismatch repair of heteroduplex DNA that is formed during recombination in yeast. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3363–3367. [PMC free article] [PubMed]
  • Holbeck SL, Smith GR. Chi enhances heteroduplex DNA levels during recombination. Genetics. 1992 Dec;132(4):879–891. [PMC free article] [PubMed]
  • Judd SR, Petes TD. Physical lengths of meiotic and mitotic gene conversion tracts in Saccharomyces cerevisiae. Genetics. 1988 Mar;118(3):401–410. [PMC free article] [PubMed]
  • Kadyk LC, Hartwell LH. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics. 1992 Oct;132(2):387–402. [PMC free article] [PubMed]
  • Kirkpatrick DT, Petes TD. Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Nature. 1997 Jun 26;387(6636):929–931. [PubMed]
  • Lichten M, Fox MS. Evidence for inclusion of regions of nonhomology in heteroduplex products of bacteriophage lambda recombination. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7180–7184. [PMC free article] [PubMed]
  • Lichten M, Goyon C, Schultes NP, Treco D, Szostak JW, Haber JE, Nicolas A. Detection of heteroduplex DNA molecules among the products of Saccharomyces cerevisiae meiosis. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7653–7657. [PMC free article] [PubMed]
  • Lieb M. Spontaneous mutation at a 5-methylcytosine hotspot is prevented by very short patch (VSP) mismatch repair. Genetics. 1991 May;128(1):23–27. [PMC free article] [PubMed]
  • Lovett ST, Drapkin PT, Sutera VA, Jr, Gluckman-Peskind TJ. A sister-strand exchange mechanism for recA-independent deletion of repeated DNA sequences in Escherichia coli. Genetics. 1993 Nov;135(3):631–642. [PMC free article] [PubMed]
  • Manivasakam P, Rosenberg SM, Hastings PJ. Poorly repaired mismatches in heteroduplex DNA are hyper-recombinagenic in Saccharomyces cerevisiae. Genetics. 1996 Feb;142(2):407–416. [PMC free article] [PubMed]
  • McGill C, Shafer B, Strathern J. Coconversion of flanking sequences with homothallic switching. Cell. 1989 May 5;57(3):459–467. [PubMed]
  • Meselson MS, Radding CM. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. [PMC free article] [PubMed]
  • Modrich P. Mechanisms and biological effects of mismatch repair. Annu Rev Genet. 1991;25:229–253. [PubMed]
  • Moore CW, Hampsey DM, Ernst JF, Sherman F. Differential mismatch repair can explain the disproportionalities between physical distances and recombination frequencies of cyc1 mutations in yeast. Genetics. 1988 May;119(1):21–34. [PMC free article] [PubMed]
  • Nag DK, Petes TD. Meiotic recombination between dispersed repeated genes is associated with heteroduplex formation. Mol Cell Biol. 1990 Aug;10(8):4420–4423. [PMC free article] [PubMed]
  • Nag DK, Petes TD. Seven-base-pair inverted repeats in DNA form stable hairpins in vivo in Saccharomyces cerevisiae. Genetics. 1991 Nov;129(3):669–673. [PMC free article] [PubMed]
  • Nag DK, Petes TD. Physical detection of heteroduplexes during meiotic recombination in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1993 Apr;13(4):2324–2331. [PMC free article] [PubMed]
  • Nag DK, White MA, Petes TD. Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast. Nature. 1989 Jul 27;340(6231):318–320. [PubMed]
  • Nassif N, Penney J, Pal S, Engels WR, Gloor GB. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol. 1994 Mar;14(3):1613–1625. [PMC free article] [PubMed]
  • Neddermann P, Jiricny J. Efficient removal of uracil from G.U mispairs by the mismatch-specific thymine DNA glycosylase from HeLa cells. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1642–1646. [PMC free article] [PubMed]
  • Negritto MT, Wu X, Kuo T, Chu S, Bailis AM. Influence of DNA sequence identity on efficiency of targeted gene replacement. Mol Cell Biol. 1997 Jan;17(1):278–286. [PMC free article] [PubMed]
  • Nelson HH, Sweetser DB, Nickoloff JA. Effects of terminal nonhomology and homeology on double-strand-break-induced gene conversion tract directionality. Mol Cell Biol. 1996 Jun;16(6):2951–2957. [PMC free article] [PubMed]
  • Nickoloff JA, Chen EY, Heffron F. A 24-base-pair DNA sequence from the MAT locus stimulates intergenic recombination in yeast. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7831–7835. [PMC free article] [PubMed]
  • Nickoloff JA, Reynolds RJ. Subcloning with new ampicillin- and kanamycin-resistant analogs of pUC19. Biotechniques. 1991 Apr;10(4):469–472. [PubMed]
  • Nickoloff JA, Singer JD, Heffron F. In vivo analysis of the Saccharomyces cerevisiae HO nuclease recognition site by site-directed mutagenesis. Mol Cell Biol. 1990 Mar;10(3):1174–1179. [PMC free article] [PubMed]
  • Nickoloff JA, Singer JD, Hoekstra MF, Heffron F. Double-strand breaks stimulate alternative mechanisms of recombination repair. J Mol Biol. 1989 Jun 5;207(3):527–541. [PubMed]
  • Orr-Weaver TL, Szostak JW, Rothstein RJ. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6354–6358. [PMC free article] [PubMed]
  • Priebe SD, Westmoreland J, Nilsson-Tillgren T, Resnick MA. Induction of recombination between homologous and diverged DNAs by double-strand gaps and breaks and role of mismatch repair. Mol Cell Biol. 1994 Jul;14(7):4802–4814. [PMC free article] [PubMed]
  • Ray A, Siddiqi I, Kolodkin AL, Stahl FW. Intra-chromosomal gene conversion induced by a DNA double-strand break in Saccharomyces cerevisiae. J Mol Biol. 1988 May 20;201(2):247–260. [PubMed]
  • Ray BL, White CI, Haber JE. Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Oct;11(10):5372–5380. [PMC free article] [PubMed]
  • Ray FA, Miller EM, Nickoloff JA. Efficient marker rescue and domain replacement without fragment subcloning. Anal Biochem. 1995 Jan 1;224(1):440–443. [PubMed]
  • Ronne H, Rothstein R. Mitotic sectored colonies: evidence of heteroduplex DNA formation during direct repeat recombination. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2696–2700. [PMC free article] [PubMed]
  • Schär P, Kohli J. Marker effects of G to C transversions on intragenic recombination and mismatch repair in Schizosaccharomyces pombe. Genetics. 1993 Apr;133(4):825–835. [PMC free article] [PubMed]
  • Sun H, Treco D, Schultes NP, Szostak JW. Double-strand breaks at an initiation site for meiotic gene conversion. Nature. 1989 Mar 2;338(6210):87–90. [PubMed]
  • Sun H, Treco D, Szostak JW. Extensive 3'-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell. 1991 Mar 22;64(6):1155–1161. [PubMed]
  • Sweetser DB, Hough H, Whelden JF, Arbuckle M, Nickoloff JA. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity. Mol Cell Biol. 1994 Jun;14(6):3863–3875. [PMC free article] [PubMed]
  • Symington LS, Petes TD. Expansions and contractions of the genetic map relative to the physical map of yeast chromosome III. Mol Cell Biol. 1988 Feb;8(2):595–604. [PMC free article] [PubMed]
  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. [PubMed]
  • Weng YS, Nickoloff JA. Nonselective URA3 colony-color assay in yeast ade1 or ade2 mutants. Biotechniques. 1997 Aug;23(2):237–241. [PubMed]
  • Weng YS, Whelden J, Gunn L, Nickoloff JA. Double-strand break-induced mitotic gene conversion: examination of tract polarity and products of multiple recombinational repair events. Curr Genet. 1996 Mar;29(4):335–343. [PubMed]
  • White CI, Haber JE. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 1990 Mar;9(3):663–673. [PMC free article] [PubMed]
  • Willis KK, Klein HL. Intrachromosomal recombination in Saccharomyces cerevisiae: reciprocal exchange in an inverted repeat and associated gene conversion. Genetics. 1987 Dec;117(4):633–643. [PMC free article] [PubMed]
  • Worth L, Jr, Clark S, Radman M, Modrich P. Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3238–3241. [PMC free article] [PubMed]
  • Wu TC, Lichten M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science. 1994 Jan 28;263(5146):515–518. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...