• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. Jun 15, 1996; 24(12): 2331–2337.
PMCID: PMC145921

Dual influence of the yeast Cat1p (Snf1p) protein kinase on carbon source-dependent transcriptional activation of gluconeogenic genes by the regulatory gene CAT8.

Abstract

The CSRE (carbon source-responsive element) is a sequence motif responsible for the transcriptional activation of gluconeogenic structural genes in Saccharomyces cerevisiae. We have isolated a regulatory gene, DIL1 (derepression of isocitrate lyase, = CAT8), which is specifically required for derepression of CSRE-dependent genes. Expression of CAT8 is carbon source regulated and requires a functional Cat1p (Snf1p) protein kinase. The derepression defect of CAT8 in a cat1 mutant could be suppressed by a mutant Mig1p repressor protein. Derepression of CAT8 also requires a functional HAP2 gene, suggesting a regulatory connection between respiratory and gluconeogenic genes. Carbon source-dependent protein-CSRE complexes detected in a gel retardation analysis with wild-type extracts were absent in cat8 mutant extracts. However, similar experiments with an epitope-tagged CAT8 gene product in the presence of tag-specific antibodies gave evidence against a direct binding of Cat8p to the CSRE. A constitutively expressed GAL4-CAT8 fusion gene revealed a carbon source-dependent transcriptional activation of a UAS(GAL)-containing reporter gene. Activation mediated by Cat8p was no longer detectable in a cat1 mutant. Thus, biosynthetic control of CAT8 as well as transcriptional activation by Cat8p requires a functional Cat1p protein kinase. A model proposing CAT8 as a specific activator of a transcription factor(s) binding to the CSRE is discussed.

Full Text

The Full Text of this article is available as a PDF (97K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Gancedo JM. Carbon catabolite repression in yeast. Eur J Biochem. 1992 Jun 1;206(2):297–313. [PubMed]
  • Entian KD, Barnett JA. Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem Sci. 1992 Dec;17(12):506–510. [PubMed]
  • Ronne H. Glucose repression in fungi. Trends Genet. 1995 Jan;11(1):12–17. [PubMed]
  • Zimmermann FK, Kaufmann I, Rasenberger H, Haubetamann P. Genetics of carbon catabolite repression in Saccharomycess cerevisiae: genes involved in the derepression process. Mol Gen Genet. 1977 Feb 28;151(1):95–103. [PubMed]
  • Celenza JL, Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science. 1986 Sep 12;233(4769):1175–1180. [PubMed]
  • Schüller HJ, Entian KD. Isolation and expression analysis of two yeast regulatory genes involved in the derepression of glucose-repressible enzymes. Mol Gen Genet. 1987 Sep;209(2):366–373. [PubMed]
  • Celenza JL, Eng FJ, Carlson M. Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Mol Cell Biol. 1989 Nov;9(11):5045–5054. [PMC free article] [PubMed]
  • Schüller HJ, Entian KD. Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes. J Bacteriol. 1991 Mar;173(6):2045–2052. [PMC free article] [PubMed]
  • Nehlin JO, Ronne H. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. EMBO J. 1990 Sep;9(9):2891–2898. [PMC free article] [PubMed]
  • Nehlin JO, Carlberg M, Ronne H. Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J. 1991 Nov;10(11):3373–3377. [PMC free article] [PubMed]
  • Vallier LG, Carlson M. Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae. Genetics. 1994 May;137(1):49–54. [PMC free article] [PubMed]
  • Lundin M, Nehlin JO, Ronne H. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol. 1994 Mar;14(3):1979–1985. [PMC free article] [PubMed]
  • Schöler A, Schüller HJ. Structure and regulation of the isocitrate lyase gene ICL1 from the yeast Saccharomyces cerevisiae. Curr Genet. 1993 May-Jun;23(5-6):375–381. [PubMed]
  • Fernandez E, Fernandez M, Moreno F, Rodicio R. Transcriptional regulation of the isocitrate lyase encoding gene in Saccharomyces cerevisiae. FEBS Lett. 1993 Nov 1;333(3):238–242. [PubMed]
  • López-Boado YS, Herrero P, Fernández T, Fernández R, Moreno F. Glucose-stimulated phosphorylation of yeast isocitrate lyase in vivo. J Gen Microbiol. 1988 Sep;134(9):2499–2505. [PubMed]
  • Ordiz I, Herrero P, Rodicio R, Moreno F. Glucose-induced inactivation of isocitrate lyase in Saccharomyces cerevisiae is mediated by an internal decapeptide sequence. FEBS Lett. 1995 Jul 3;367(3):219–222. [PubMed]
  • Schöler A, Schüller HJ. A carbon source-responsive promoter element necessary for activation of the isocitrate lyase gene ICL1 is common to genes of the gluconeogenic pathway in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1994 Jun;14(6):3613–3622. [PMC free article] [PubMed]
  • Hedges D, Proft M, Entian KD. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1995 Apr;15(4):1915–1922. [PMC free article] [PubMed]
  • Proft M, Grzesitza D, Entian KD. Identification and characterization of regulatory elements in the phosphoenolpyruvate carboxykinase gene PCK1 of Saccharomyces cerevisiae. Mol Gen Genet. 1995 Feb 6;246(3):367–373. [PubMed]
  • Kratzer S, Schüller HJ. Carbon source-dependent regulation of the acetyl-coenzyme A synthetase-encoding gene ACS1 from Saccharomyces cerevisiae. Gene. 1995 Aug 8;161(1):75–79. [PubMed]
  • Neigeborn L, Carlson M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics. 1984 Dec;108(4):845–858. [PMC free article] [PubMed]
  • Carlson M, Botstein D. Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase. Cell. 1982 Jan;28(1):145–154. [PubMed]
  • Niederacher D, Schüller HJ, Grzesitza D, Gütlich H, Hauser HP, Wagner T, Entian KD. Identification of UAS elements and binding proteins necessary for derepression of Saccharomyces cerevisiae fructose-1,6-bisphosphatase. Curr Genet. 1992 Nov;22(5):363–370. [PubMed]
  • Myers AM, Tzagoloff A, Kinney DM, Lusty CJ. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene. 1986;45(3):299–310. [PubMed]
  • Sadowski I, Bell B, Broad P, Hollis M. GAL4 fusion vectors for expression in yeast or mammalian cells. Gene. 1992 Sep 1;118(1):137–141. [PubMed]
  • Soni R, Carmichael JP, Murray JA. Parameters affecting lithium acetate-mediated transformation of Saccharomyces cerevisiae and development of a rapid and simplified procedure. Curr Genet. 1993 Nov;24(5):455–459. [PubMed]
  • Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. [PubMed]
  • Hinnebusch AG. Evidence for translational regulation of the activator of general amino acid control in yeast. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6442–6446. [PMC free article] [PubMed]
  • Entian KD. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol Gen Genet. 1980;178(3):633–637. [PubMed]
  • Forsburg SL, Guarente L. Mutational analysis of upstream activation sequence 2 of the CYC1 gene of Saccharomyces cerevisiae: a HAP2-HAP3-responsive site. Mol Cell Biol. 1988 Feb;8(2):647–654. [PMC free article] [PubMed]
  • De Rijcke M, Seneca S, Punyammalee B, Glansdorff N, Crabeel M. Characterization of the DNA target site for the yeast ARGR regulatory complex, a sequence able to mediate repression or induction by arginine. Mol Cell Biol. 1992 Jan;12(1):68–81. [PMC free article] [PubMed]
  • Reece RJ, Ptashne M. Determinants of binding-site specificity among yeast C6 zinc cluster proteins. Science. 1993 Aug 13;261(5123):909–911. [PubMed]
  • Schwank S, Ebbert R, Rautenstrauss K, Schweizer E, Schüller HJ. Yeast transcriptional activator INO2 interacts as an Ino2p/Ino4p basic helix-loop-helix heteromeric complex with the inositol/choline-responsive element necessary for expression of phospholipid biosynthetic genes in Saccharomyces cerevisiae. Nucleic Acids Res. 1995 Jan 25;23(2):230–237. [PMC free article] [PubMed]
  • Hirschhorn JN, Brown SA, Clark CD, Winston F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 1992 Dec;6(12A):2288–2298. [PubMed]
  • Yu J, Donoviel MS, Young ET. Adjacent upstream activation sequence elements synergistically regulate transcription of ADH2 in Saccharomyces cerevisiae. Mol Cell Biol. 1989 Jan;9(1):34–42. [PMC free article] [PubMed]
  • Einerhand AW, Kos WT, Distel B, Tabak HF. Characterization of a transcriptional control element involved in proliferation of peroxisomes in yeast in response to oleate. Eur J Biochem. 1993 May 15;214(1):323–331. [PubMed]
  • Filipits M, Simon MM, Rapatz W, Hamilton B, Ruis H. A Saccharomyces cerevisiae upstream activating sequence mediates induction of peroxisome proliferation by fatty acids. Gene. 1993 Sep 30;132(1):49–55. [PubMed]
  • Johnston SA, Hopper JE. Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6971–6975. [PMC free article] [PubMed]
  • Vincent O, Gancedo JM. Analysis of positive elements sensitive to glucose in the promoter of the FBP1 gene from yeast. J Biol Chem. 1995 May 26;270(21):12832–12838. [PubMed]
  • Seipel K, Georgiev O, Schaffner W. A minimal transcription activation domain consisting of a specific array of aspartic acid and leucine residues. Biol Chem Hoppe Seyler. 1994 Jul;375(7):463–470. [PubMed]
  • Stone G, Sadowski I. GAL4 is regulated by a glucose-responsive functional domain. EMBO J. 1993 Apr;12(4):1375–1385. [PMC free article] [PubMed]
  • Proft M, Kötter P, Hedges D, Bojunga N, Entian KD. CAT5, a new gene necessary for derepression of gluconeogenic enzymes in Saccharomyces cerevisiae. EMBO J. 1995 Dec 15;14(24):6116–6126. [PMC free article] [PubMed]
  • Ostling J, Carlberg M, Ronne H. Functional domains in the Mig1 repressor. Mol Cell Biol. 1996 Mar;16(3):753–761. [PMC free article] [PubMed]
  • Woods A, Munday MR, Scott J, Yang X, Carlson M, Carling D. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem. 1994 Jul 29;269(30):19509–19515. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

Formats: