• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plntcellLink to Publisher's site
Plant Cell. Aug 1998; 10(8): 1321–1332.
PMCID: PMC144061

EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis.

Abstract

The Arabidopsis ethylene receptor gene ETR1 and two related genes, ERS1 and ETR2, were identified previously. These three genes encode proteins homologous to the two-component regulators that are widely used for environment sensing in bacteria. Mutations in these genes confer ethylene insensitivity to wild-type plants. Here, we identified two Arabidopsis genes, EIN4 and ERS2, by cross-hybridizing them with ETR2. Sequence analysis showed that they are more closely related to ETR2 than they are to ETR1 or ERS1. EIN4 previously was isolated as a dominant ethylene-insensitive mutant. ERS2 also conferred dominant ethylene insensitivity when certain mutations were introduced into it. Double mutant analysis indicated that ERS2, similar to ETR1, ETR2, ERS1, and EIN4, acts upstream of CTR1. Therefore, EIN4 and ERS2, along with ETR1, ETR2, and ERS1, are members of the ethylene receptor-related gene family of Arabidopsis. RNA expression patterns of members of this gene family suggest that they might have distinct as well as redundant functions in ethylene perception.

Full Text

The Full Text of this article is available as a PDF (3.5M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Appleby JL, Parkinson JS, Bourret RB. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell. 1996 Sep 20;86(6):845–848. [PubMed]
  • Bell CJ, Ecker JR. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. [PubMed]
  • Bleecker AB, Estelle MA, Somerville C, Kende H. Insensitivity to Ethylene Conferred by a Dominant Mutation in Arabidopsis thaliana. Science. 1988 Aug 26;241(4869):1086–1089. [PubMed]
  • Chang C, Bowman JL, DeJohn AW, Lander ES, Meyerowitz EM. Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6856–6860. [PMC free article] [PubMed]
  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993 Oct 22;262(5133):539–544. [PubMed]
  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 1997 Jun 27;89(7):1133–1144. [PubMed]
  • Clark KL, Larsen PB, Wang X, Chang C. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5401–5406. [PMC free article] [PubMed]
  • Drews GN, Bowman JL, Meyerowitz EM. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell. 1991 Jun 14;65(6):991–1002. [PubMed]
  • Ecker JR. The ethylene signal transduction pathway in plants. Science. 1995 May 5;268(5211):667–675. [PubMed]
  • Goeschl JD. Concentration dependencies of some effects of ethylene on etiolated pea, peanut, bean, and cotton seedlings. Plant Physiol. 1975 Apr;55(4):670–677. [PMC free article] [PubMed]
  • Guzmán P, Ecker JR. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell. 1990 Jun;2(6):513–523. [PMC free article] [PubMed]
  • Hua J, Chang C, Sun Q, Meyerowitz EM. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science. 1995 Sep 22;269(5231):1712–1714. [PubMed]
  • Isono K, Niwa Y, Satoh K, Kobayashi H. Evidence for transcriptional regulation of plastid photosynthesis genes in Arabidopsis thaliana roots. Plant Physiol. 1997 Jun;114(2):623–630. [PMC free article] [PubMed]
  • Kende H, Zeevaart JAD. The Five "Classical" Plant Hormones. Plant Cell. 1997 Jul;9(7):1197–1210. [PMC free article] [PubMed]
  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. [PubMed]
  • Maeda T, Wurgler-Murphy SM, Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994 May 19;369(6477):242–245. [PubMed]
  • McBride KE, Summerfelt KR. Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol Biol. 1990 Feb;14(2):269–276. [PubMed]
  • O'Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ. Ethylene as a Signal Mediating the Wound Response of Tomato Plants. Science. 1996 Dec 13;274(5294):1914–1917. [PubMed]
  • Parkinson JS, Kofoid EC. Communication modules in bacterial signaling proteins. Annu Rev Genet. 1992;26:71–112. [PubMed]
  • Penmetsa RV, Cook DR. A Legume Ethylene-Insensitive Mutant Hyperinfected by Its Rhizobial Symbiont. Science. 1997 Jan 24;275(5299):527–530. [PubMed]
  • Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Métraux JP, Manners JM, Broekaert WF. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell. 1996 Dec;8(12):2309–2323. [PMC free article] [PubMed]
  • Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR. Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics. 1995 Mar;139(3):1393–1409. [PMC free article] [PubMed]
  • Sakai H, Medrano LJ, Meyerowitz EM. Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature. 1995 Nov 9;378(6553):199–203. [PubMed]
  • Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5812–5817. [PMC free article] [PubMed]
  • Schaller GE, Bleecker AB. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science. 1995 Dec 15;270(5243):1809–1811. [PubMed]
  • Smyth DR, Bowman JL, Meyerowitz EM. Early flower development in Arabidopsis. Plant Cell. 1990 Aug;2(8):755–767. [PMC free article] [PubMed]
  • Tanimoto M, Roberts K, Dolan L. Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J. 1995 Dec;8(6):943–948. [PubMed]
  • Vriezen WH, van Rijn CP, Voesenek LA, Mariani C. A homolog of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant J. 1997 Jun;11(6):1265–1271. [PubMed]
  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992 May 29;69(5):843–859. [PubMed]
  • Wilkinson JQ, Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ. An ethylene-inducible component of signal transduction encoded by never-ripe. Science. 1995 Dec 15;270(5243):1807–1809. [PubMed]

Articles from The Plant Cell are provided here courtesy of American Society of Plant Biologists

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Taxonomy
    Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...