• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plntcellLink to Publisher's site
Plant Cell. Jun 1998; 10(6): 947–956.
PMCID: PMC144036

An Arabidopsis mutant with enhanced resistance to powdery mildew.

Abstract

We have identified an Arabidopsis mutant that displays enhanced disease resistance to the fungus Erysiphe cichoracearum, causal agent of powdery mildew. The edr1 mutant does not constitutively express the pathogenesis-related genes PR-1, BGL2, or PR-5 and thus differs from previously described disease-resistant mutants of Arabidopsis. E. cichoracearum conidia (asexual spores) germinated normally and formed extensive hyphae on edr1 plants, indicating that the initial stages of infection were not inhibited. Production of conidiophores on edr1 plants, however, was <16% of that observed on wild-type Arabidopsis. Reduction in sporulation correlated with a more rapid induction of defense responses. Autofluorescent compounds and callose accumulated in edr1 leaves 3 days after inoculation with E. cichoracearum, and dead mesophyll cells accumulated in edr1 leaves starting 5 days after inoculation. Macroscopic patches of dead cells appeared 6 days after inoculation. This resistance phenotype is similar to that conferred by "late-acting" powdery mildew resistance genes of wheat and barley. The edr1 mutation is recessive and maps to chromosome 1 between molecular markers ATEAT1 and NCC1. We speculate that the edr1 mutation derepresses multiple defense responses, making them more easily induced by virulent pathogens.

Full Text

The Full Text of this article is available as a PDF (319K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Adam L, Somerville SC. Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant J. 1996 Mar;9(3):341–356. [PubMed]
  • Bell CJ, Ecker JR. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. [PubMed]
  • Bent AF. Plant Disease Resistance Genes: Function Meets Structure. Plant Cell. 1996 Oct;8(10):1757–1771. [PMC free article] [PubMed]
  • Bisgrove SR, Simonich MT, Smith NM, Sattler A, Innes RW. A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell. 1994 Jul;6(7):927–933. [PMC free article] [PubMed]
  • Bowling SA, Guo A, Cao H, Gordon AS, Klessig DF, Dong X. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell. 1994 Dec;6(12):1845–1857. [PMC free article] [PubMed]
  • Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell. 1997 Sep;9(9):1573–1584. [PMC free article] [PubMed]
  • Broekaert WF, Terras FR, Cammue BP, Osborn RW. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 1995 Aug;108(4):1353–1358. [PMC free article] [PubMed]
  • Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, et al. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell. 1997 Mar 7;88(5):695–705. [PubMed]
  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J. A central role of salicylic Acid in plant disease resistance. Science. 1994 Nov 18;266(5188):1247–1250. [PubMed]
  • Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA, Dangl JL. Arabidopsis mutants simulating disease resistance response. Cell. 1994 May 20;77(4):565–577. [PubMed]
  • Epple P, Apel K, Bohlmann H. An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol. 1995 Nov;109(3):813–820. [PMC free article] [PubMed]
  • Epple P, Apel K, Bohlmann H. Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell. 1997 Apr;9(4):509–520. [PMC free article] [PubMed]
  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J. Requirement of salicylic Acid for the induction of systemic acquired resistance. Science. 1993 Aug 6;261(5122):754–756. [PubMed]
  • Glazebrook J, Rogers EE, Ausubel FM. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics. 1996 Jun;143(2):973–982. [PMC free article] [PubMed]
  • Greenberg JT, Guo A, Klessig DF, Ausubel FM. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell. 1994 May 20;77(4):551–563. [PubMed]
  • Hu G, Richter TE, Hulbert SH, Pryor T. Disease Lesion Mimicry Caused by Mutations in the Rust Resistance Gene rp1. Plant Cell. 1996 Aug;8(8):1367–1376. [PMC free article] [PubMed]
  • Hulbert SH. Structure and evolution of the rp1 complex conferring rust resistance in maize. Annu Rev Phytopathol. 1997;35:293–310. [PubMed]
  • KING EO, WARD MK, RANEY DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed]
  • Koch E, Slusarenko A. Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell. 1990 May;2(5):437–445. [PMC free article] [PubMed]
  • Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. [PubMed]
  • Kunkel BN. A useful weed put to work: genetic analysis of disease resistance in Arabidopsis thaliana. Trends Genet. 1996 Feb;12(2):63–69. [PubMed]
  • Logemann J, Schell J, Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. [PubMed]
  • Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Métraux JP, Manners JM, Broekaert WF. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell. 1996 Dec;8(12):2309–2323. [PMC free article] [PubMed]
  • Peterhansel C, Freialdenhoven A, Kurth J, Kolsch R, Schulze-Lefert P. Interaction Analyses of Genes Required for Resistance Responses to Powdery Mildew in Barley Reveal Distinct Pathways Leading to Leaf Cell Death. Plant Cell. 1997 Aug;9(8):1397–1409. [PMC free article] [PubMed]
  • Pieterse CM, van Wees SC, Hoffland E, van Pelt JA, van Loon LC. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell. 1996 Aug;8(8):1225–1237. [PMC free article] [PubMed]
  • Rao AG. Antimicrobial peptides. Mol Plant Microbe Interact. 1995 Jan-Feb;8(1):6–13. [PubMed]
  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD. Systemic Acquired Resistance. Plant Cell. 1996 Oct;8(10):1809–1819. [PMC free article] [PubMed]
  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD. Molecular genetics of plant disease resistance. Science. 1995 May 5;268(5211):661–667. [PubMed]
  • Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J. Acquired resistance in Arabidopsis. Plant Cell. 1992 Jun;4(6):645–656. [PMC free article] [PubMed]
  • Whalen MC, Innes RW, Bent AF, Staskawicz BJ. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell. 1991 Jan;3(1):49–59. [PMC free article] [PubMed]
  • Wolter M, Hollricher K, Salamini F, Schulze-Lefert P. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol Gen Genet. 1993 May;239(1-2):122–128. [PubMed]

Articles from The Plant Cell are provided here courtesy of American Society of Plant Biologists

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...