• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plntcellLink to Publisher's site
Plant Cell. Jun 1998; 10(6): 1043–1054.
PMCID: PMC144030

The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein.

Abstract

Arabidopsis abscisic acid (ABA)-insensitive abi4 mutants have pleiotropic defects in seed development, including decreased sensitivity to ABA inhibition of germination and altered seed-specific gene expression. This phenotype is consistent with a role for ABI4 in regulating seed responses to ABA and/or seed-specific signals. We isolated the ABI4 gene by positional cloning and confirmed its identity by complementation analysis. The predicted protein product shows homology to a plant-specific family of transcriptional regulators characterized by a conserved DNA binding domain, the APETALA 2 domain. The single mutant allele identified has a single base pair deletion, resulting in a frameshift that should disrupt the C-terminal half of the protein but leave the presumed DNA binding domain intact. Expression analyses showed that despite the seed-specific nature of the mutant phenotype, ABI4 expression is not seed specific.

Full Text

The Full Text of this article is available as a PDF (241K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bell CJ, Ecker JR. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. [PubMed]
  • Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science. 1994 Sep 23;265(5180):1856–1860. [PubMed]
  • Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. [PMC free article] [PubMed]
  • Büttner M, Singh KB. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5961–5966. [PMC free article] [PubMed]
  • Church GM, Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. [PMC free article] [PubMed]
  • Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science. 1996 Aug 30;273(5279):1239–1241. [PubMed]
  • Finkelstein RR. Abscisic acid-insensitive mutations provide evidence for stage-specific signal pathways regulating expression of an Arabidopsis late embryogenesis-abundant (lea) gene. Mol Gen Genet. 1993 Apr;238(3):401–408. [PubMed]
  • Finkelstein RR, Somerville CR. Three Classes of Abscisic Acid (ABA)-Insensitive Mutations of Arabidopsis Define Genes that Control Overlapping Subsets of ABA Responses. Plant Physiol. 1990 Nov;94(3):1172–1179. [PMC free article] [PubMed]
  • Finkelstein RR, Tenbarge KM, Shumway JE, Crouch ML. Role of ABA in Maturation of Rapeseed Embryos. Plant Physiol. 1985 Jul;78(3):630–636. [PMC free article] [PubMed]
  • Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 1968 Apr;50(1):151–158. [PubMed]
  • Gaubier P, Raynal M, Hull G, Huestis GM, Grellet F, Arenas C, Pagès M, Delseny M. Two different Em-like genes are expressed in Arabidopsis thaliana seeds during maturation. Mol Gen Genet. 1993 Apr;238(3):409–418. [PubMed]
  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell. 1992 Oct;4(10):1251–1261. [PMC free article] [PubMed]
  • Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris PC, Bouvier-Durand M, Vartanian N. Current advances in abscisic acid action and signalling. Plant Mol Biol. 1994 Dec;26(5):1557–1577. [PubMed]
  • Guiltinan MJ, Marcotte WR, Jr, Quatrano RS. A plant leucine zipper protein that recognizes an abscisic acid response element. Science. 1990 Oct 12;250(4978):267–271. [PubMed]
  • Herrin DL, Schmidt GW. Rapid, reversible staining of northern blots prior to hybridization. Biotechniques. 1988 Mar;6(3):196–200. [PubMed]
  • Hodgson CP, Fisk RZ. Hybridization probe size control: optimized 'oligolabelling'. Nucleic Acids Res. 1987 Aug 11;15(15):6295–6295. [PMC free article] [PubMed]
  • Hoecker U, Vasil IK, McCarty DR. Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize. Genes Dev. 1995 Oct 15;9(20):2459–2469. [PubMed]
  • Holappa LD, Walker-Simmons MK. The Wheat Abscisic Acid-Responsive Protein Kinase mRNA, PKABA1, Is Up-Regulated by Dehydration, Cold Temperature, and Osmotic Stress. Plant Physiol. 1995 Jul;108(3):1203–1210. [PMC free article] [PubMed]
  • Hong SW, Jon JH, Kwak JM, Nam HG. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol. 1997 Apr;113(4):1203–1212. [PMC free article] [PubMed]
  • Jack T, Fox GL, Meyerowitz EM. Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell. 1994 Feb 25;76(4):703–716. [PubMed]
  • Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell. 1994 Sep;6(9):1211–1225. [PMC free article] [PubMed]
  • Knetsch MLW, Wang M, Snaar-Jagalska BE, Heimovaara-Dijkstra S. Abscisic Acid Induces Mitogen-Activated Protein Kinase Activation in Barley Aleurone Protoplasts. Plant Cell. 1996 Jun;8(6):1061–1067. [PMC free article] [PubMed]
  • Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. [PubMed]
  • Koornneef M, Hanhart CJ, Hilhorst HW, Karssen CM. In Vivo Inhibition of Seed Development and Reserve Protein Accumulation in Recombinants of Abscisic Acid Biosynthesis and Responsiveness Mutants in Arabidopsis thaliana. Plant Physiol. 1989 Jun;90(2):463–469. [PMC free article] [PubMed]
  • LaCasse EC, Lefebvre YA. Nuclear localization signals overlap DNA- or RNA-binding domains in nucleic acid-binding proteins. Nucleic Acids Res. 1995 May 25;23(10):1647–1656. [PMC free article] [PubMed]
  • Leung J, Bouvier-Durand M, Morris PC, Guerrier D, Chefdor F, Giraudat J. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science. 1994 Jun 3;264(5164):1448–1452. [PubMed]
  • Leung J, Merlot S, Giraudat J. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell. 1997 May;9(5):759–771. [PMC free article] [PubMed]
  • Li J, Assmann SM. An Abscisic Acid-Activated and Calcium-Independent Protein Kinase from Guard Cells of Fava Bean. Plant Cell. 1996 Dec;8(12):2359–2368. [PMC free article] [PubMed]
  • Liu YG, Mitsukawa N, Lister C, Dean C, Whittier RF. Isolation and mapping of a new set of 129 RFLP markers in Arabidopsis thaliana using recombinant inbred lines. Plant J. 1996 Oct;10(4):733–736. [PubMed]
  • Lopez R, Larsen F, Prydz H. Evaluation of the exon predictions of the GRAIL software. Genomics. 1994 Nov 1;24(1):133–136. [PubMed]
  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 1993 Nov 26;262(5138):1432–1436. [PubMed]
  • McCarty DR, Carson CB, Stinard PS, Robertson DS. Molecular Analysis of viviparous-1: An Abscisic Acid-Insensitive Mutant of Maize. Plant Cell. 1989 May;1(5):523–532. [PMC free article] [PubMed]
  • McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell. 1991 Sep 6;66(5):895–905. [PubMed]
  • Meyer K, Leube MP, Grill E. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science. 1994 Jun 3;264(5164):1452–1455. [PubMed]
  • Mitchell PJ, Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989 Jul 28;245(4916):371–378. [PubMed]
  • Nelson D, Salamini F, Bartels D. Abscisic acid promotes novel DNA-binding activity to a desiccation-related promoter of Craterostigma plantagineum. Plant J. 1994 Apr;5(4):451–458. [PubMed]
  • Newman T, de Bruijn FJ, Green P, Keegstra K, Kende H, McIntosh L, Ohlrogge J, Raikhel N, Somerville S, Thomashow M, et al. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 1994 Dec;106(4):1241–1255. [PMC free article] [PubMed]
  • Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell. 1995 Feb;7(2):173–182. [PMC free article] [PubMed]
  • Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):7076–7081. [PMC free article] [PubMed]
  • Ooms JJJ, Leon-Kloosterziel KM, Bartels D, Koornneef M, Karssen CM. Acquisition of Desiccation Tolerance and Longevity in Seeds of Arabidopsis thaliana (A Comparative Study Using Abscisic Acid-Insensitive abi3 Mutants). Plant Physiol. 1993 Aug;102(4):1185–1191. [PMC free article] [PubMed]
  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J. Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell. 1994 Nov;6(11):1567–1582. [PMC free article] [PubMed]
  • Razik MA, Quatrano RS. Effect of the nuclear factors EmBP1 and viviparous1 on the transcription of the Em gene in HeLa nuclear extracts. Plant Cell. 1997 Oct;9(10):1791–1803. [PMC free article] [PubMed]
  • Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lönnig WE, Saedler H, Sommer H. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 1992 Jan;11(1):251–263. [PMC free article] [PubMed]
  • Söderman E, Mattsson J, Engström P. The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J. 1996 Aug;10(2):375–381. [PubMed]
  • Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):1035–1040. [PMC free article] [PubMed]
  • Sullivan ML, Green PJ. Post-transcriptional regulation of nuclear-encoded genes in higher plants: the roles of mRNA stability and translation. Plant Mol Biol. 1993 Dec;23(6):1091–1104. [PubMed]
  • Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell. 1993 Nov;5(11):1529–1539. [PMC free article] [PubMed]
  • Wang ML, Huang L, Bongard-Pierce DK, Belmonte S, Zachgo EA, Morris JW, Dolan M, Goodman HM. Construction of an approximately 2 Mb contig in the region around 80 cM of Arabidopsis thaliana chromosome 2. Plant J. 1997 Sep;12(3):711–730. [PubMed]
  • Wilson K, Long D, Swinburne J, Coupland G. A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell. 1996 Apr;8(4):659–671. [PMC free article] [PubMed]
  • Zachgo EA, Wang ML, Dewdney J, Bouchez D, Camilleri C, Belmonte S, Huang L, Dolan M, Goodman HM. A physical map of chromosome 2 of Arabidopsis thaliana. Genome Res. 1996 Jan;6(1):19–25. [PubMed]
  • Zhou J, Tang X, Martin GB. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J. 1997 Jun 2;16(11):3207–3218. [PMC free article] [PubMed]

Articles from The Plant Cell are provided here courtesy of American Society of Plant Biologists

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • Gene
    Gene
    Gene links
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links
  • Taxonomy
    Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...