• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plntcellLink to Publisher's site
Plant Cell. Nov 1998; 10(11): 1847–1860.
PMCID: PMC143951

Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants.

Abstract

Plant resistance (R) genes have evolved specific recognition capabilities in defense against pathogens. The evolution of R gene function and maintenance of R gene diversity within a plant species are therefore of great interest. In the Arabidopsis accession Wassilewskija, the RPP1 region on chromosome 3 contains four genetically linked recognition specificities, conditioning resistance to different isolates of the biotrophic oomycete Peronospora parasitica (downy mildew). We show that three of four tightly linked genes in this region, designated RPP1-WsA, RPP1-WsB, and RPP1-WsC, encode functional products of the NBS-LRR (nucleotide binding site-leucine-rich repeat) R protein class. They possess a TIR (Toll, interleukin-1, resistance) domain that is characteristic of certain other NBS-LRR-type R proteins, but in addition, they have unique hydrophilic or hydrophobic N termini. Together, the three RPP1 genes account for the spectrum of resistance previously assigned to the RPP1 region and thus comprise a complex R locus. The distinct but partially overlapping resistance capabilities conferred by these genes are best explained by the hypothesis that each recognizes a different pathogen avirulence determinant. We present evidence suggesting that the RPP genes at this locus are subject to the same selective forces that have been demonstrated for structurally different LRR-type R genes.

Full Text

The Full Text of this article is available as a PDF (494K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aarts MG, te Lintel Hekkert B, Holub EB, Beynon JL, Stiekema WJ, Pereira A. Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact. 1998 Apr;11(4):251–258. [PubMed]
  • Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10306–10311. [PMC free article] [PubMed]
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. [PubMed]
  • Anderson PA, Okubara PA, Arroyo-Garcia R, Meyers BC, Michelmore RW. Molecular analysis of irradiation-induced and spontaneous deletion mutants at a disease resistance locus in Lactuca sativa. Mol Gen Genet. 1996 Jun 12;251(3):316–325. [PubMed]
  • Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, Finnegan EJ, Ellis JG. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell. 1997 Apr;9(4):641–651. [PMC free article] [PubMed]
  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP. Signaling in plant-microbe interactions. Science. 1997 May 2;276(5313):726–733. [PubMed]
  • Bent AF. Plant Disease Resistance Genes: Function Meets Structure. Plant Cell. 1996 Oct;8(10):1757–1771. [PMC free article] [PubMed]
  • Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature. 1998 Jan 29;391(6666):485–488. [PubMed]
  • Bogdanove AJ, Kim JF, Wei Z, Kolchinsky P, Charkowski AO, Conlin AK, Collmer A, Beer SV. Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1325–1330. [PMC free article] [PubMed]
  • Botella MA, Coleman MJ, Hughes DE, Nishimura MT, Jones JD, Somerville SC. Map positions of 47 Arabidopsis sequences with sequence similarity to disease resistance genes. Plant J. 1997 Nov;12(5):1197–1211. [PubMed]
  • Castle LA, Meinke DW. A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development. Plant Cell. 1994 Jan;6(1):25–41. [PMC free article] [PubMed]
  • Crameri A, Raillard SA, Bermudez E, Stemmer WP. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature. 1998 Jan 15;391(6664):288–291. [PubMed]
  • Creusot F, Fouilloux E, Dron M, Lafleuriel J, Picard G, Billault A, Le Paslier D, Cohen D, Chabouté ME, Durr A, et al. The CIC library: a large insert YAC library for genome mapping in Arabidopsis thaliana. Plant J. 1995 Nov;8(5):763–770. [PubMed]
  • Dietrich RA, Richberg MH, Schmidt R, Dean C, Dangl JL. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell. 1997 Mar 7;88(5):685–694. [PubMed]
  • Ellis J, Lawrence G, Ayliffe M, Anderson P, Collins N, Finnegan J, Frost D, Luck J, Pryor T. Advances in the molecular genetic analysis of the flax-flax rust interaction. Annu Rev Phytopathol. 1997;35:271–291. [PubMed]
  • Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science. 1995 Aug 11;269(5225):843–846. [PubMed]
  • Hammond-Kosack Kim E, Jones Jonathan D G. PLANT DISEASE RESISTANCE GENES. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):575–607. [PubMed]
  • Hughes AL. Origin and evolution of HLA class I pseudogenes. Mol Biol Evol. 1995 Mar;12(2):247–258. [PubMed]
  • Hughes AL, Nei M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature. 1988 Sep 8;335(6186):167–170. [PubMed]
  • Hulbert SH. Structure and evolution of the rp1 complex conferring rust resistance in maize. Annu Rev Phytopathol. 1997;35:293–310. [PubMed]
  • Jia Y, Loh YT, Zhou J, Martin GB. Alleles of Pto and Fen occur in bacterial speck-susceptible and fenthion-insensitive tomato cultivars and encode active protein kinases. Plant Cell. 1997 Jan;9(1):61–73. [PMC free article] [PubMed]
  • Joosten MH, Cozijnsen TJ, De Wit PJ. Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature. 1994 Jan 27;367(6461):384–386. [PubMed]
  • Klimyuk VI, Carroll BJ, Thomas CM, Jones JD. Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J. 1993 Mar;3(3):493–494. [PubMed]
  • Kobe B, Deisenhofer J. Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature. 1993 Dec 23;366(6457):751–756. [PubMed]
  • Kobe B, Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci. 1994 Oct;19(10):415–421. [PubMed]
  • Kobe B, Deisenhofer J. Proteins with leucine-rich repeats. Curr Opin Struct Biol. 1995 Jun;5(3):409–416. [PubMed]
  • Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell. 1995 Aug;7(8):1195–1206. [PMC free article] [PubMed]
  • Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ. Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell. 1996 Nov;8(11):2033–2046. [PMC free article] [PubMed]
  • Parker JE, Coleman MJ, Szabò V, Frost LN, Schmidt R, van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JD. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell. 1997 Jun;9(6):879–894. [PMC free article] [PubMed]
  • Parniske M, Hammond-Kosack KE, Golstein C, Thomas CM, Jones DA, Harrison K, Wulff BB, Jones JD. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell. 1997 Dec 12;91(6):821–832. [PubMed]
  • Reignault P, Frost LN, Richardson H, Daniels MJ, Jones JD, Parker JE. Four Arabidopsis RPP loci controlling resistance to the Noco2 isolate of Peronospora parasitica map to regions known to contain other RPP recognition specificities. Mol Plant Microbe Interact. 1996 Aug;9(6):464–473. [PubMed]
  • Richter TE, Pryor TJ, Bennetzen JL, Hulbert SH. New rust resistance specificities associated with recombination in the Rp1 complex in maize. Genetics. 1995 Sep;141(1):373–381. [PMC free article] [PubMed]
  • Rohe M, Gierlich A, Hermann H, Hahn M, Schmidt B, Rosahl S, Knogge W. The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrs1 resistance genotype. EMBO J. 1995 Sep 1;14(17):4168–4177. [PMC free article] [PubMed]
  • Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ. Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato. Science. 1996 Dec 20;274(5295):2063–2065. [PubMed]
  • Song WY, Pi LY, Wang GL, Gardner J, Holsten T, Ronald PC. Evolution of the rice Xa21 disease resistance gene family. Plant Cell. 1997 Aug;9(8):1279–1287. [PMC free article] [PubMed]
  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD. Molecular genetics of plant disease resistance. Science. 1995 May 5;268(5211):661–667. [PubMed]
  • Sudupak MA, Bennetzen JL, Hulbert SH. Unequal exchange and meiotic instability of disease-resistance genes in the Rp1 region of maize. Genetics. 1993 Jan;133(1):119–125. [PMC free article] [PubMed]
  • Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB. Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science. 1996 Dec 20;274(5295):2060–2063. [PubMed]
  • Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ, Hatzixanthis K, Jones JD. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell. 1997 Dec;9(12):2209–2224. [PMC free article] [PubMed]
  • Traut TW. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur J Biochem. 1994 May 15;222(1):9–19. [PubMed]
  • Vieira J, Messing J. New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene. 1991 Apr;100:189–194. [PubMed]
  • von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. [PMC free article] [PubMed]
  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell. 1994 Sep 23;78(6):1101–1115. [PubMed]

Articles from The Plant Cell are provided here courtesy of American Society of Plant Biologists

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Gene
    Gene
    Gene links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Taxonomy
    Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...