• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
Appl Environ Microbiol. Apr 1995; 61(4): 1426–1430.
PMCID: PMC1388412

Use of Tn5 Mutants To Assess the Role of the Dissimilatory Nitrite Reductase in the Competitive Abilities of Two Pseudomonas Strains in Soil

Abstract

We examined the influence of soil aeration state and plant root presence on the comparative survival of wild-type bacteria and isogenic Tn5 (Nir(sup-)) mutants lacking the ability to synthesize nitrite reductase. Two denitrifying Pseudomonas strains with different nitrite reductase types were used. Enumeration of bacteria in sterile and nonsterile soils was based on differential antibiotic resistance. The validity of the bacterial models studied (i.e., equal growth of wild-type and mutant bacteria under aerobic conditions and significantly better growth of wild-type bacteria under denitrifying conditions) was verified in pure-culture studies. In sterile soil, both strains survived better under aerobic than under anaerobic conditions. The lower efficiency of denitrification than O(inf2) respiration in supporting bacterial growth explained this result, and the physical heterogeneity of soil did not strongly modify the results obtained in pure-culture studies. In nonsterile soil, one of the Pseudomonas strains survived better under anaerobic conditions while the other competed equally with the indigenous soil microflora under aerobic and anaerobic conditions. However, when the Nir(sup-)-to-total inoculant ratios (wild type plus Nir(sup-) mutant) were analyzed, it appeared that the presence of nitrite reductase conferred on both Pseudomonas strains a competitive advantage for anaerobic environment or rhizosphere colonization. This is the first attempt to demonstrate with isogenic nondenitrifying mutants that denitrification can contribute to the persistence and distribution of bacteria in fluctuating soil environments.

Full Text

The Full Text of this article is available as a PDF (226K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Biel SW, Hartl DL. Evolution of transposons: natural selection for Tn5 in Escherichia coli K12. Genetics. 1983 Apr;103(4):581–592. [PMC free article] [PubMed]
  • Blot M, Meyer J, Arber W. Bleomycin-resistance gene derived from the transposon Tn5 confers selective advantage to Escherichia coli K-12. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9112–9116. [PMC free article] [PubMed]
  • Compeau G, Al-Achi BJ, Platsouka E, Levy SB. Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl Environ Microbiol. 1988 Oct;54(10):2432–2438. [PMC free article] [PubMed]
  • Gamble TN, Betlach MR, Tiedje JM. Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol. 1977 Apr;33(4):926–939. [PMC free article] [PubMed]
  • Marshall B, Flynn P, Kamely D, Levy SB. Survival of Escherichia coli with and without ColE1::Tn5 after aerosol dispersal in a laboratory and a farm environment. Appl Environ Microbiol. 1988 Jul;54(7):1776–1783. [PMC free article] [PubMed]
  • Murray RE, Parsons LL, Smith MS. Aerobic and anaerobic growth of rifampin-resistant denitrifying bacteria in soil. Appl Environ Microbiol. 1990 Feb;56(2):323–328. [PMC free article] [PubMed]
  • Murray RE, Parsons LL, Smith MS. Competition between Two Isolates of Denitrifying Bacteria Added to Soil. Appl Environ Microbiol. 1992 Dec;58(12):3890–3895. [PMC free article] [PubMed]
  • Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA. Denitrification: ecological niches, competition and survival. Antonie Van Leeuwenhoek. 1982;48(6):569–583. [PubMed]
  • Ye RW, Arunakumari A, Averill BA, Tiedje JM. Mutants of Pseudomonas fluorescens deficient in dissimilatory nitrite reduction are also altered in nitric oxide reduction. J Bacteriol. 1992 Apr;174(8):2560–2564. [PMC free article] [PubMed]
  • Ye RW, Averill BA, Tiedje JM. Characterization of Tn5 mutants deficient in dissimilatory nitrite reduction in Pseudomonas sp. strain G-179, which contains a copper nitrite reductase. J Bacteriol. 1992 Oct;174(20):6653–6658. [PMC free article] [PubMed]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...