Logo of ajhgGuide for AuthorsAbout this journalExplore this journalAmerican Journal of Human Genetics
Am J Hum Genet. 1999 Sep; 65(3): 656–663.
PMCID: PMC1377971

Missense mutation in the alternative splice region of the PAX6 gene in eye anomalies.


The PAX6 gene is involved in ocular morphogenesis, and PAX6 mutations have been detected in various types of ocular anomalies, including aniridia, Peters anomaly, corneal dystrophy, congenital cataract, and foveal hypoplasia. The gene encodes a transcriptional regulator that recognizes target genes through its paired-type DNA-binding domain. The paired domain is composed of two distinct DNA-binding subdomains, the N-terminal subdomain (NTS) and the C-terminal subdomain (CTS), which bind respective consensus DNA sequences. The human PAX6 gene produces two alternative splice isoforms that have the distinct structure of the paired domain. The insertion, into the NTS, of 14 additional amino acids encoded by exon 5a abolishes the DNA-binding activity of the NTS and unmasks the DNA-binding ability of the CTS. Thus, exon 5a appears to function as a molecular switch that specifies target genes. We ascertained a novel missense mutation in four pedigrees with Peters anomaly, congenital cataract, Axenfeldt anomaly, and/or foveal hypoplasia, which, to our knowledge, is the first mutation identified in the splice-variant region. A T-->A transition at the 20th nucleotide position of exon 5a results in a Val-->Asp (GTC-->GAC) substitution at the 7th codon of the alternative splice region. Functional analyses demonstrated that the V54D mutation slightly increased NTS binding and decreased CTS transactivation activity to almost half.

Full Text

The Full Text of this article is available as a PDF (1.5M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Azuma N, Hotta Y, Tanaka H, Yamada M. Missense mutations in the PAX6 gene in aniridia. Invest Ophthalmol Vis Sci. 1998 Dec;39(13):2524–2528. [PubMed]
  • Azuma N, Nishina S, Yanagisawa H, Okuyama T, Yamada M. PAX6 missense mutation in isolated foveal hypoplasia. Nat Genet. 1996 Jun;13(2):141–142. [PubMed]
  • Azuma N, Yamada M. Missense mutation at the C terminus of the PAX6 gene in ocular anterior segment anomalies. Invest Ophthalmol Vis Sci. 1998 Apr;39(5):828–830. [PubMed]
  • Baldwin CT, Hoth CF, Amos JA, da-Silva EO, Milunsky A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature. 1992 Feb 13;355(6361):637–638. [PubMed]
  • Balling R, Deutsch U, Gruss P. undulated, a mutation affecting the development of the mouse skeleton, has a point mutation in the paired box of Pax 1. Cell. 1988 Nov 4;55(3):531–535. [PubMed]
  • Chisholm AD, Horvitz HR. Patterning of the Caenorhabditis elegans head region by the Pax-6 family member vab-3. Nature. 1995 Sep 7;377(6544):52–55. [PubMed]
  • Czerny T, Schaffner G, Busslinger M. DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dev. 1993 Oct;7(10):2048–2061. [PubMed]
  • Epstein J, Cai J, Glaser T, Jepeal L, Maas R. Identification of a Pax paired domain recognition sequence and evidence for DNA-dependent conformational changes. J Biol Chem. 1994 Mar 18;269(11):8355–8361. [PubMed]
  • Epstein JA, Glaser T, Cai J, Jepeal L, Walton DS, Maas RL. Two independent and interactive DNA-binding subdomains of the Pax6 paired domain are regulated by alternative splicing. Genes Dev. 1994 Sep 1;8(17):2022–2034. [PubMed]
  • Fisher E, Scambler P. Human haploinsufficiency--one for sorrow, two for joy. Nat Genet. 1994 May;7(1):5–7. [PubMed]
  • Gehring WJ. The master control gene for morphogenesis and evolution of the eye. Genes Cells. 1996 Jan;1(1):11–15. [PubMed]
  • Glaser T, Walton DS, Maas RL. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat Genet. 1992 Nov;2(3):232–239. [PubMed]
  • Hanson IM, Fletcher JM, Jordan T, Brown A, Taylor D, Adams RJ, Punnett HH, van Heyningen V. Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters' anomaly. Nat Genet. 1994 Feb;6(2):168–173. [PubMed]
  • Martha A, Ferrell RE, Mintz-Hittner H, Lyons LA, Saunders GF. Paired box mutations in familial and sporadic aniridia predicts truncated aniridia proteins. Am J Hum Genet. 1994 May;54(5):801–811. [PMC free article] [PubMed]
  • Mirzayans F, Pearce WG, MacDonald IM, Walter MA. Mutation of the PAX6 gene in patients with autosomal dominant keratitis. Am J Hum Genet. 1995 Sep;57(3):539–548. [PMC free article] [PubMed]
  • Schedl A, Ross A, Lee M, Engelkamp D, Rashbass P, van Heyningen V, Hastie ND. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities. Cell. 1996 Jul 12;86(1):71–82. [PubMed]
  • Singh S, Tang HK, Lee JY, Saunders GF. Truncation mutations in the transactivation region of PAX6 result in dominant-negative mutants. J Biol Chem. 1998 Aug 21;273(34):21531–21541. [PubMed]
  • Tadokoro K, Oki N, Sakai A, Fujii H, Ohshima A, Nagafuchi S, Inoue T, Yamada M. PCR detection of 9 polymorphisms in the WT1 gene. Hum Mol Genet. 1993 Dec;2(12):2205–2206. [PubMed]
  • Tang HK, Chao LY, Saunders GF. Functional analysis of paired box missense mutations in the PAX6 gene. Hum Mol Genet. 1997 Mar;6(3):381–386. [PubMed]
  • Tassabehji M, Read AP, Newton VE, Harris R, Balling R, Gruss P, Strachan T. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature. 1992 Feb 13;355(6361):635–636. [PubMed]
  • Tassabehji M, Read AP, Newton VE, Patton M, Gruss P, Harris R, Strachan T. Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nat Genet. 1993 Jan;3(1):26–30. [PubMed]
  • Ton CC, Hirvonen H, Miwa H, Weil MM, Monaghan P, Jordan T, van Heyningen V, Hastie ND, Meijers-Heijboer H, Drechsler M, et al. Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell. 1991 Dec 20;67(6):1059–1074. [PubMed]
  • Treisman J, Harris E, Desplan C. The paired box encodes a second DNA-binding domain in the paired homeo domain protein. Genes Dev. 1991 Apr;5(4):594–604. [PubMed]
  • Vogan KJ, Epstein DJ, Trasler DG, Gros P. The splotch-delayed (Spd) mouse mutant carries a point mutation within the paired box of the Pax-3 gene. Genomics. 1993 Aug;17(2):364–369. [PubMed]
  • Walther C, Gruss P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development. 1991 Dec;113(4):1435–1449. [PubMed]
  • Xu W, Rould MA, Jun S, Desplan C, Pabo CO. Crystal structure of a paired domain-DNA complex at 2.5 A resolution reveals structural basis for Pax developmental mutations. Cell. 1995 Feb 24;80(4):639–650. [PubMed]
  • Yamaguchi Y, Sawada J, Yamada M, Handa H, Azuma N. Autoregulation of Pax6 transcriptional activation by two distinct DNA-binding subdomains of the paired domain. Genes Cells. 1997 Apr;2(4):255–261. [PubMed]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Cited in Books
    Cited in Books
    NCBI Bookshelf books that cite the current articles.
  • ClinVar
    Clinical variations associated with publication
  • Compound
    PubChem chemical compound records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records. Multiple substance records may contribute to the PubChem compound record.
  • Gene
    Gene records that cite the current articles. Citations in Gene are added manually by NCBI or imported from outside public resources.
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence and PMC links.
  • GEO Profiles
    GEO Profiles
    Gene Expression Omnibus (GEO) Profiles of molecular abundance data. The current articles are references on the Gene record associated with the GEO profile.
  • HomoloGene
    HomoloGene clusters of homologous genes and sequences that cite the current articles. These are references on the Gene and sequence records in the HomoloGene entry.
  • MedGen
    Related information in MedGen
  • Nucleotide
    Primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • OMIM
    Genome Survey Sequence (GSS) nucleotide records reported in the current articles.
  • Pathways + GO
    Pathways + GO
    Pathways and biological systems (BioSystems) that cite the current articles. Citations are from the BioSystems source databases (KEGG and BioCyc).
  • Protein
    Protein translation features of primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...