• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of rnaThe RNA SocietyeTOC AlertsSubscriptionsJournal HomeCSHL PressRNA
RNA. Jun 1999; 5(6): 739–750.
PMCID: PMC1369801

C-terminal interaction of translational release factors eRF1 and eRF3 of fission yeast: G-domain uncoupled binding and the role of conserved amino acids.


Translation termination in eukaryotes requires a stop codon-responsive (class-I) release factor, eRF1, and a guanine nucleotide-responsive (class-II) release factor, eRF3. Schizosaccharomyces pombe eRF3 has an N-terminal polypeptide similar in size to the prion-like domain of Saccharomyces cerevisiae eRF3 in addition to the EF-1alpha-like catalytic domain. By in vivo two-hybrid assay as well as by an in vitro pull-down analysis using purified proteins of S. pombe as well as of S. cerevisiae, eRF1 bound to the C-terminal one-third domain of eRF3, named eRF3C, but not to the N-terminal two-thirds, which was inconsistent with the previous report by Paushkin et al. (1997, Mol Cell Biol 17:2798-2805). The activity of S. pombe eRF3 in eRF1 binding was affected by Ala substitutions for the C-terminal residues conserved not only in eRF3s but also in elongation factors EF-Tu and EF-1alpha. These single mutational defects in the eRF1-eRF3 interaction became evident when either truncated protein eRF3C or C-terminally altered eRF1 proteins were used for the authentic protein, providing further support for the presence of a C-terminal interaction. Given that eRF3 is an EF-Tu/EF-1alpha homolog required for translation termination, the apparent dispensability of the N-terminal domain of eRF3 for binding to eRF1 is in contrast to importance, direct or indirect, in EF-Tu/EF-1alpha for binding to aminoacyl-tRNA, although both eRF3 and EF-Tu/EF-1alpha share some common amino acids for binding to eRF1 and aminoacyl-tRNA, respectively. These differences probably reflect the independence of eRF1 binding in relation to the G-domain function of eRF3 (i.e., probably uncoupled with GTP hydrolysis), whereas aminoacyl-tRNA binding depends on that of EF-Tu/EF-1alpha(i.e., coupled with GTP hydrolysis), which sheds some light on the mechanism of eRF3 function.

Full Text

The Full Text of this article is available as a PDF (890K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation. Mol Cell Biol. 1997 May;17(5):2798–2805. [PMC free article] [PubMed]
  • AEvarsson A, Brazhnikov E, Garber M, Zheltonosova J, Chirgadze Y, al-Karadaghi S, Svensson LA, Liljas A. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J. 1994 Aug 15;13(16):3669–3677. [PMC free article] [PubMed]
  • Ahmadian MR, Kreutzer R, Blechschmidt B, Sprinzl M. Site-directed mutagenesis of Thermus thermophilus EF-Tu: the substitution of threonine-62 by serine or alanine. FEBS Lett. 1995 Dec 18;377(2):253–257. [PubMed]
  • Chien CT, Bartel PL, Sternglanz R, Fields S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9578–9582. [PMC free article] [PubMed]
  • Czaplinski K, Ruiz-Echevarria MJ, Paushkin SV, Han X, Weng Y, Perlick HA, Dietz HC, Ter-Avanesyan MD, Peltz SW. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 1998 Jun 1;12(11):1665–1677. [PMC free article] [PubMed]
  • Czworkowski J, Wang J, Steitz TA, Moore PB. The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution. EMBO J. 1994 Aug 15;13(16):3661–3668. [PMC free article] [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Feilotter HE, Hannon GJ, Ruddell CJ, Beach D. Construction of an improved host strain for two hybrid screening. Nucleic Acids Res. 1994 Apr 25;22(8):1502–1503. [PMC free article] [PubMed]
  • Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. [PubMed]
  • Frolova LY, Simonsen JL, Merkulova TI, Litvinov DY, Martensen PM, Rechinsky VO, Camonis JH, Kisselev LL, Justesen J. Functional expression of eukaryotic polypeptide chain release factors 1 and 3 by means of baculovirus/insect cells and complex formation between the factors. Eur J Biochem. 1998 Aug 15;256(1):36–44. [PubMed]
  • Hoshino S, Miyazawa H, Enomoto T, Hanaoka F, Kikuchi Y, Kikuchi A, Ui M. A human homologue of the yeast GST1 gene codes for a GTP-binding protein and is expressed in a proliferation-dependent manner in mammalian cells. EMBO J. 1989 Dec 1;8(12):3807–3814. [PMC free article] [PubMed]
  • Ito K, Ebihara K, Nakamura Y. The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA. 1998 Aug;4(8):958–972. [PMC free article] [PubMed]
  • Ito K, Ebihara K, Uno M, Nakamura Y. Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5443–5448. [PMC free article] [PubMed]
  • Ito K, Uno M, Nakamura Y. Single amino acid substitution in prokaryote polypeptide release factor 2 permits it to terminate translation at all three stop codons. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8165–8169. [PMC free article] [PubMed]
  • Jonák J, Anborgh PH, Parmeggiani A. Histidine-118 of elongation factor Tu: its role in aminoacyl-tRNA binding and regulation of the GTPase activity. FEBS Lett. 1994 Apr 18;343(1):94–98. [PubMed]
  • Kikuchi Y, Shimatake H, Kikuchi A. A yeast gene required for the G1-to-S transition encodes a protein containing an A-kinase target site and GTPase domain. EMBO J. 1988 Apr;7(4):1175–1182. [PMC free article] [PubMed]
  • Knudsen CR, Clark BF. Site-directed mutagenesis of Arg58 and Asp86 of elongation factor Tu from Escherichia coli: effects on the GTPase reaction and aminoacyl-tRNA binding. Protein Eng. 1995 Dec;8(12):1267–1273. [PubMed]
  • Knudsen CR, Kjaersgård IV, Wiborg O, Clark BF. Mutation of the conserved Gly94 and Gly126 in elongation factor Tu from Escherichia coli. Elucidation of their structural and functional roles. Eur J Biochem. 1995 Feb 15;228(1):176–183. [PubMed]
  • Laurberg M, Mansilla F, Clark BF, Knudsen CR. Investigation of functional aspects of the N-terminal region of elongation factor Tu from Escherichia coli using a protein engineering approach. J Biol Chem. 1998 Feb 20;273(8):4387–4391. [PubMed]
  • Lindquist S. Mad cows meet psi-chotic yeast: the expansion of the prion hypothesis. Cell. 1997 May 16;89(4):495–498. [PubMed]
  • Mansilla F, Knudsen CR, Laurberg M, Clark BF. Mutational analysis of Escherichia coli elongation factor Tu in search of a role for the N-terminal region. Protein Eng. 1997 Aug;10(8):927–934. [PubMed]
  • Merkulova TI, Frolova LY, Lazar M, Camonis J, Kisselev LL. C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Lett. 1999 Jan 22;443(1):41–47. [PubMed]
  • Nakamura Y, Ito K. How protein reads the stop codon and terminates translation. Genes Cells. 1998 May;3(5):265–278. [PubMed]
  • Nakamura Y, Ito K, Isaksson LA. Emerging understanding of translation termination. Cell. 1996 Oct 18;87(2):147–150. [PubMed]
  • Nissen P, Kjeldgaard M, Thirup S, Clark BF, Nyborg J. The ternary complex of aminoacylated tRNA and EF-Tu-GTP. Recognition of a bond and a fold. Biochimie. 1996;78(11-12):921–933. [PubMed]
  • Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF, Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 1995 Dec 1;270(5241):1464–1472. [PubMed]
  • Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation. Mol Cell Biol. 1997 May;17(5):2798–2805. [PMC free article] [PubMed]
  • Pedersen GN, Rattenborg T, Knudsen CR, Clark BF. The role of Glu259 in Escherichia coli elongation factor Tu in ternary complex formation. Protein Eng. 1998 Feb;11(2):101–108. [PubMed]
  • Smith DB, Johnson KS. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. [PubMed]
  • Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 1995 Sep 1;14(17):4365–4373. [PMC free article] [PubMed]
  • Stansfield I, Tuite MF. Polypeptide chain termination in Saccharomyces cerevisiae. Curr Genet. 1994 May;25(5):385–395. [PubMed]
  • Tubulekas I, Hughes D. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome. J Bacteriol. 1993 Jan;175(1):240–250. [PMC free article] [PubMed]
  • Wiborg O, Andersen C, Knudsen CR, Clark BF, Nyborg J. Mapping Escherichia coli elongation factor Tu residues involved in binding of aminoacyl-tRNA. J Biol Chem. 1996 Aug 23;271(34):20406–20411. [PubMed]
  • Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 1995 Aug 15;14(16):4065–4072. [PMC free article] [PubMed]

Articles from RNA are provided here courtesy of The RNA Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...