• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of rnaThe RNA SocietyeTOC AlertsSubscriptionsJournal HomeCSHL PressRNA
RNA. Dec 1998; 4(12): 1523–1536.
PMCID: PMC1369723

Enhancer elements activate the weak 3' splice site of alpha-tropomyosin exon 2.

Abstract

We have identified four purine-rich sequences that act as splicing enhancer elements to activate the weak 3' splice site of alpha-tropomyosin exon 2. These elements also activate the splicing of heterologous substrates containing weak 3' splice sites or mutated 5' splice sites. However, they are unique in that they can activate splicing whether they are placed in an upstream or downstream exon, and the two central elements can function regardless of their position relative to one another. The presence of excess RNAs containing these enhancers could effectively inhibit in vitro pre-mRNA splicing reactions in a substrate-dependent manner and, at lower concentrations of competitor RNA, the addition of SR proteins could relieve the inhibition. However, when extracts were depleted by incubation with biotinylated exon 2 RNAs followed by passage over streptavidin agarose, SR proteins were not sufficient to restore splicing. Instead, both SR proteins and fractions containing a 110-kD protein were necessary to rescue splicing. Using gel mobility shift assays, we show that formation of stable enhancer-specific complexes on alpha-tropomyosin exon 2 requires the presence of both SR proteins and the 110-kD protein. By analogy to the doublesex exon enhancer elements in Drosophila, our results suggest that assembly of mammalian exon enhancer complexes requires both SR and non-SR proteins to activate selection of weak splice sites.

Full Text

The Full Text of this article is available as a PDF (1.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abmayr SM, Workman JL, Roeder RG. The pseudorabies immediate early protein stimulates in vitro transcription by facilitating TFIID: promoter interactions. Genes Dev. 1988 May;2(5):542–553. [PubMed]
  • Abovich N, Rosbash M. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell. 1997 May 2;89(3):403–412. [PubMed]
  • Adams MD, Rudner DZ, Rio DC. Biochemistry and regulation of pre-mRNA splicing. Curr Opin Cell Biol. 1996 Jun;8(3):331–339. [PubMed]
  • Berglund JA, Abovich N, Rosbash M. A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. Genes Dev. 1998 Mar 15;12(6):858–867. [PMC free article] [PubMed]
  • Berglund JA, Chua K, Abovich N, Reed R, Rosbash M. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Cell. 1997 May 30;89(5):781–787. [PubMed]
  • Black DL. Finding splice sites within a wilderness of RNA. RNA. 1995 Oct;1(8):763–771. [PMC free article] [PubMed]
  • Buvoli M, Mayer SA, Patton JG. Functional crosstalk between exon enhancers, polypyrimidine tracts and branchpoint sequences. EMBO J. 1997 Dec 1;16(23):7174–7183. [PMC free article] [PubMed]
  • Chabot B. Directing alternative splicing: cast and scenarios. Trends Genet. 1996 Nov;12(11):472–478. [PubMed]
  • Coolidge CJ, Seely RJ, Patton JG. Functional analysis of the polypyrimidine tract in pre-mRNA splicing. Nucleic Acids Res. 1997 Feb 15;25(4):888–896. [PMC free article] [PubMed]
  • Coulter LR, Landree MA, Cooper TA. Identification of a new class of exonic splicing enhancers by in vivo selection. Mol Cell Biol. 1997 Apr;17(4):2143–2150. [PMC free article] [PubMed]
  • Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. [PMC free article] [PubMed]
  • Elrick LL, Humphrey MB, Cooper TA, Berget SM. A short sequence within two purine-rich enhancers determines 5' splice site specificity. Mol Cell Biol. 1998 Jan;18(1):343–352. [PMC free article] [PubMed]
  • Englard S, Seifter S. Precipitation techniques. Methods Enzymol. 1990;182:285–300. [PubMed]
  • Fu XD. Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature. 1993 Sep 2;365(6441):82–85. [PubMed]
  • Fu XD. The superfamily of arginine/serine-rich splicing factors. RNA. 1995 Sep;1(7):663–680. [PMC free article] [PubMed]
  • Fu XD, Maniatis T. The 35-kDa mammalian splicing factor SC35 mediates specific interactions between U1 and U2 small nuclear ribonucleoprotein particles at the 3' splice site. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1725–1729. [PMC free article] [PubMed]
  • Gooding C, Roberts GC, Moreau G, Nadal-Ginard B, Smith CW. Smooth muscle-specific switching of alpha-tropomyosin mutually exclusive exon selection by specific inhibition of the strong default exon. EMBO J. 1994 Aug 15;13(16):3861–3872. [PMC free article] [PubMed]
  • Gooding C, Roberts GC, Smith CW. Role of an inhibitory pyrimidine element and polypyrimidine tract binding protein in repression of a regulated alpha-tropomyosin exon. RNA. 1998 Jan;4(1):85–100. [PMC free article] [PubMed]
  • Hedley ML, Maniatis T. Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro. Cell. 1991 May 17;65(4):579–586. [PubMed]
  • Kohtz JD, Jamison SF, Will CL, Zuo P, Lührmann R, Garcia-Blanco MA, Manley JL. Protein-protein interactions and 5'-splice-site recognition in mammalian mRNA precursors. Nature. 1994 Mar 10;368(6467):119–124. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Lavigueur A, La Branche H, Kornblihtt AR, Chabot B. A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev. 1993 Dec;7(12A):2405–2417. [PubMed]
  • Lees-Miller JP, Goodwin LO, Helfman DM. Three novel brain tropomyosin isoforms are expressed from the rat alpha-tropomyosin gene through the use of alternative promoters and alternative RNA processing. Mol Cell Biol. 1990 Apr;10(4):1729–1742. [PMC free article] [PubMed]
  • Lin CH, Patton JG. Regulation of alternative 3' splice site selection by constitutive splicing factors. RNA. 1995 May;1(3):234–245. [PMC free article] [PubMed]
  • Lynch KW, Maniatis T. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev. 1996 Aug 15;10(16):2089–2101. [PubMed]
  • Manley JL, Tacke R. SR proteins and splicing control. Genes Dev. 1996 Jul 1;10(13):1569–1579. [PubMed]
  • Moore MJ, Sharp PA. Site-specific modification of pre-mRNA: the 2'-hydroxyl groups at the splice sites. Science. 1992 May 15;256(5059):992–997. [PubMed]
  • Mullen MP, Smith CW, Patton JG, Nadal-Ginard B. Alpha-tropomyosin mutually exclusive exon selection: competition between branchpoint/polypyrimidine tracts determines default exon choice. Genes Dev. 1991 Apr;5(4):642–655. [PubMed]
  • Patton JG, Mayer SA, Tempst P, Nadal-Ginard B. Characterization and molecular cloning of polypyrimidine tract-binding protein: a component of a complex necessary for pre-mRNA splicing. Genes Dev. 1991 Jul;5(7):1237–1251. [PubMed]
  • Pérez I, Lin CH, McAfee JG, Patton JG. Mutation of PTB binding sites causes misregulation of alternative 3' splice site selection in vivo. RNA. 1997 Jul;3(7):764–778. [PMC free article] [PubMed]
  • Rain JC, Rafi Z, Rhani Z, Legrain P, Krämer A. Conservation of functional domains involved in RNA binding and protein-protein interactions in human and Saccharomyces cerevisiae pre-mRNA splicing factor SF1. RNA. 1998 May;4(5):551–565. [PMC free article] [PubMed]
  • Reed R. The organization of 3' splice-site sequences in mammalian introns. Genes Dev. 1989 Dec;3(12B):2113–2123. [PubMed]
  • Reed R. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr Opin Genet Dev. 1996 Apr;6(2):215–220. [PubMed]
  • Roscigno RF, Weiner M, Garcia-Blanco MA. A mutational analysis of the polypyrimidine tract of introns. Effects of sequence differences in pyrimidine tracts on splicing. J Biol Chem. 1993 May 25;268(15):11222–11229. [PubMed]
  • Rothman A, Kulik TJ, Taubman MB, Berk BC, Smith CW, Nadal-Ginard B. Development and characterization of a cloned rat pulmonary arterial smooth muscle cell line that maintains differentiated properties through multiple subcultures. Circulation. 1992 Dec;86(6):1977–1986. [PubMed]
  • Ryner LC, Baker BS. Regulation of doublesex pre-mRNA processing occurs by 3'-splice site activation. Genes Dev. 1991 Nov;5(11):2071–2085. [PubMed]
  • Screaton GR, Cáceres JF, Mayeda A, Bell MV, Plebanski M, Jackson DG, Bell JI, Krainer AR. Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J. 1995 Sep 1;14(17):4336–4349. [PMC free article] [PubMed]
  • Singh R, Valcárcel J, Green MR. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science. 1995 May 26;268(5214):1173–1176. [PubMed]
  • Smith CW, Nadal-Ginard B. Mutually exclusive splicing of alpha-tropomyosin exons enforced by an unusual lariat branch point location: implications for constitutive splicing. Cell. 1989 Mar 10;56(5):749–758. [PubMed]
  • Smith CW, Patton JG, Nadal-Ginard B. Alternative splicing in the control of gene expression. Annu Rev Genet. 1989;23:527–577. [PubMed]
  • Smith CW, Porro EB, Patton JG, Nadal-Ginard B. Scanning from an independently specified branch point defines the 3' splice site of mammalian introns. Nature. 1989 Nov 16;342(6247):243–247. [PubMed]
  • St Johnston D, Brown NH, Gall JG, Jantsch M. A conserved double-stranded RNA-binding domain. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10979–10983. [PMC free article] [PubMed]
  • Staknis D, Reed R. SR proteins promote the first specific recognition of Pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol Cell Biol. 1994 Nov;14(11):7670–7682. [PMC free article] [PubMed]
  • Sun Q, Mayeda A, Hampson RK, Krainer AR, Rottman FM. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev. 1993 Dec;7(12B):2598–2608. [PubMed]
  • Tanaka K, Watakabe A, Shimura Y. Polypurine sequences within a downstream exon function as a splicing enhancer. Mol Cell Biol. 1994 Feb;14(2):1347–1354. [PMC free article] [PubMed]
  • Tian H, Kole R. Selection of novel exon recognition elements from a pool of random sequences. Mol Cell Biol. 1995 Nov;15(11):6291–6298. [PMC free article] [PubMed]
  • Tian M, Maniatis T. Positive control of pre-mRNA splicing in vitro. Science. 1992 Apr 10;256(5054):237–240. [PubMed]
  • Tian M, Maniatis T. A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell. 1993 Jul 16;74(1):105–114. [PubMed]
  • Tian M, Maniatis T. A splicing enhancer exhibits both constitutive and regulated activities. Genes Dev. 1994 Jul 15;8(14):1703–1712. [PubMed]
  • Wang J, Manley JL. Overexpression of the SR proteins ASF/SF2 and SC35 influences alternative splicing in vivo in diverse ways. RNA. 1995 May;1(3):335–346. [PMC free article] [PubMed]
  • Watakabe A, Tanaka K, Shimura Y. The role of exon sequences in splice site selection. Genes Dev. 1993 Mar;7(3):407–418. [PubMed]
  • Wieczorek DF, Smith CW, Nadal-Ginard B. The rat alpha-tropomyosin gene generates a minimum of six different mRNAs coding for striated, smooth, and nonmuscle isoforms by alternative splicing. Mol Cell Biol. 1988 Feb;8(2):679–694. [PMC free article] [PubMed]
  • Wu JY, Maniatis T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell. 1993 Dec 17;75(6):1061–1070. [PubMed]
  • Xiao SH, Manley JL. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 1997 Feb 1;11(3):334–344. [PubMed]
  • Xu R, Teng J, Cooper TA. The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol Cell Biol. 1993 Jun;13(6):3660–3674. [PMC free article] [PubMed]
  • Yeakley JM, Hedjran F, Morfin JP, Merillat N, Rosenfeld MG, Emeson RB. Control of calcitonin/calcitonin gene-related peptide pre-mRNA processing by constitutive intron and exon elements. Mol Cell Biol. 1993 Oct;13(10):5999–6011. [PMC free article] [PubMed]
  • Yeakley JM, Morfin JP, Rosenfeld MG, Fu XD. A complex of nuclear proteins mediates SR protein binding to a purine-rich splicing enhancer. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7582–7587. [PMC free article] [PubMed]
  • Zahler AM, Lane WS, Stolk JA, Roth MB. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 1992 May;6(5):837–847. [PubMed]
  • Zahler AM, Roth MB. Distinct functions of SR proteins in recruitment of U1 small nuclear ribonucleoprotein to alternative 5' splice sites. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2642–2646. [PMC free article] [PubMed]
  • Zuo P, Manley JL. The human splicing factor ASF/SF2 can specifically recognize pre-mRNA 5' splice sites. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3363–3367. [PMC free article] [PubMed]

Articles from RNA are provided here courtesy of The RNA Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links