• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of rnaThe RNA SocietyeTOC AlertsSubscriptionsJournal HomeCSHL PressRNA
RNA. Dec 1998; 4(12): 1514–1522.
PMCID: PMC1369722

tRNA(2Gln) mutants that translate the CGA arginine codon as glutamine in Escherichia coli.

Abstract

We present a novel missense suppression system for the selection of tRNA(2GIn) mutants that can efficiently translate the CGA (arginine) codon as glutamine. tRNA(2Gln) mutants were cloned from a partially randomized synthetic gene pool using a plasmid vector that simultaneously expresses the tRNA gene and, to ensure efficient aminoacylation, the glutamine aminoacyl-tRNA synthetase gene (glnS). tRNA mutants that insert glutamine at CGA were selected as missense suppressors of a lacZ mutant (lacZ625(CGA)) that contains CGA substituted for an essential glutamine codon. Preliminary characterizations of four suppressors is presented. All of them contain two anticodon mutations: C-->U at position 34 and U-->C at position 35, which allow for cognate translation of CGA. U35 was previously shown to be an important determinant for glutaminylation of tRNA(2Gln) in vitro; suppression in vivo requires overexpression of the glutaminyl-tRNA synthetase gene (glnS). One tRNA variant contains no further mutations and has the highest missense suppression activity (8%). Three other isolates each contain an additional point mutation that alters suppression efficiency. This system will be useful for further studies of tRNA structure and function. In addition, because relatively efficient translation of the rare CGA codon as glutamine is not toxic for Escherichia coli, it may be possible to translate this sense codon with other alternate meanings, a property which could greatly facilitate protein engineering.

Full Text

The Full Text of this article is available as a PDF (317K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Atkins JF, Weiss RB, Thompson S, Gesteland RF. Towards a genetic dissection of the basis of triplet decoding, and its natural subversion: programmed reading frame shifts and hops. Annu Rev Genet. 1991;25:201–228. [PubMed]
  • Bilgin N, Claesens F, Pahverk H, Ehrenberg M. Kinetic properties of Escherichia coli ribosomes with altered forms of S12. J Mol Biol. 1992 Apr 20;224(4):1011–1027. [PubMed]
  • Blomfield IC, Vaughn V, Rest RF, Eisenstein BI. Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol Microbiol. 1991 Jun;5(6):1447–1457. [PubMed]
  • Bohman K, Ruusala T, Jelenc PC, Kurland CG. Kinetic impairment of restrictive streptomycin-resistant ribosomes. Mol Gen Genet. 1984;198(1):90–99. [PubMed]
  • Bradley D, Park JV, Soll L. TRNA2Gln Su+2 mutants that increase amber suppression. J Bacteriol. 1981 Feb;145(2):704–712. [PMC free article] [PubMed]
  • Brown CM, Stockwell PA, Dalphin ME, Tate WP. The translational termination signal database (TransTerm) now also includes initiation contexts. Nucleic Acids Res. 1994 Sep;22(17):3620–3624. [PMC free article] [PubMed]
  • Brown CM, Stockwell PA, Trotman CN, Tate WP. The signal for the termination of protein synthesis in procaryotes. Nucleic Acids Res. 1990 Apr 25;18(8):2079–2086. [PMC free article] [PubMed]
  • Buckingham RH. Codon context and protein synthesis: enhancements of the genetic code. Biochimie. 1994;76(5):351–354. [PubMed]
  • Curran JF. Decoding with the A:I wobble pair is inefficient. Nucleic Acids Res. 1995 Feb 25;23(4):683–688. [PMC free article] [PubMed]
  • Curran JF, Yarus M. Base substitutions in the tRNA anticodon arm do not degrade the accuracy of reading frame maintenance. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6538–6542. [PMC free article] [PubMed]
  • Curran JF, Yarus M. Reading frame selection and transfer RNA anticodon loop stacking. Science. 1987 Dec 11;238(4833):1545–1550. [PubMed]
  • Curran JF, Yarus M. Use of tRNA suppressors to probe regulation of Escherichia coli release factor 2. J Mol Biol. 1988 Sep 5;203(1):75–83. [PubMed]
  • Dao V, Guenther R, Malkiewicz A, Nawrot B, Sochacka E, Kraszewski A, Jankowska J, Everett K, Agris PF. Ribosome binding of DNA analogs of tRNA requires base modifications and supports the "extended anticodon". Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2125–2129. [PMC free article] [PubMed]
  • Hayase Y, Jahn M, Rogers MJ, Sylvers LA, Koizumi M, Inoue H, Ohtsuka E, Söll D. Recognition of bases in Escherichia coli tRNA(Gln) by glutaminyl-tRNA synthetase: a complete identity set. EMBO J. 1992 Nov;11(11):4159–4165. [PMC free article] [PubMed]
  • Ibba M, Hong KW, Sherman JM, Sever S, Söll D. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6953–6958. [PMC free article] [PubMed]
  • Jahn M, Rogers MJ, Söll D. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase. Nature. 1991 Jul 18;352(6332):258–260. [PubMed]
  • Koh JT, Cornish VW, Schultz PG. An experimental approach to evaluating the role of backbone interactions in proteins using unnatural amino acid mutagenesis. Biochemistry. 1997 Sep 23;36(38):11314–11322. [PubMed]
  • Li J, Esberg B, Curran JF, Björk GR. Three modified nucleosides present in the anticodon stem and loop influence the in vivo aa-tRNA selection in a tRNA-dependent manner. J Mol Biol. 1997 Aug 15;271(2):209–221. [PubMed]
  • Liu DR, Magliery TJ, Pastrnak M, Schultz PG. Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10092–10097. [PMC free article] [PubMed]
  • Liu DR, Magliery TJ, Schultz PG. Characterization of an 'orthogonal' suppressor tRNA derived from E. coli tRNA2(Gln). Chem Biol. 1997 Sep;4(9):685–691. [PubMed]
  • Lustig F, Borén T, Claesson C, Simonsson C, Barciszewska M, Lagerkvist U. The nucleotide in position 32 of the tRNA anticodon loop determines ability of anticodon UCC to discriminate among glycine codons. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3343–3347. [PMC free article] [PubMed]
  • Ma C, Kudlicki W, Odom OW, Kramer G, Hardesty B. In vitro protein engineering using synthetic tRNA(Ala) with different anticodons. Biochemistry. 1993 Aug 10;32(31):7939–7945. [PubMed]
  • Mendel D, Cornish VW, Schultz PG. Site-directed mutagenesis with an expanded genetic code. Annu Rev Biophys Biomol Struct. 1995;24:435–462. [PubMed]
  • Moazed D, Noller HF. Intermediate states in the movement of transfer RNA in the ribosome. Nature. 1989 Nov 9;342(6246):142–148. [PubMed]
  • Murgola EJ. tRNA, suppression, and the code. Annu Rev Genet. 1985;19:57–80. [PubMed]
  • Nakamura Y, Ito K, Isaksson LA. Emerging understanding of translation termination. Cell. 1996 Oct 18;87(2):147–150. [PubMed]
  • Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG. A general method for site-specific incorporation of unnatural amino acids into proteins. Science. 1989 Apr 14;244(4901):182–188. [PubMed]
  • Osawa S, Jukes TH. On codon reassignment. J Mol Evol. 1995 Aug;41(2):247–249. [PubMed]
  • Osawa S, Jukes TH, Watanabe K, Muto A. Recent evidence for evolution of the genetic code. Microbiol Rev. 1992 Mar;56(1):229–264. [PMC free article] [PubMed]
  • Poole ES, Major LL, Mannering SA, Tate WP. Translational termination in Escherichia coli: three bases following the stop codon crosslink to release factor 2 and affect the decoding efficiency of UGA-containing signals. Nucleic Acids Res. 1998 Feb 15;26(4):954–960. [PMC free article] [PubMed]
  • Qian Q, Li JN, Zhao H, Hagervall TG, Farabaugh PJ, Björk GR. A new model for phenotypic suppression of frameshift mutations by mutant tRNAs. Mol Cell. 1998 Mar;1(4):471–482. [PubMed]
  • Raftery LA, Egan JB, Cline SW, Yarus M. Defined set of cloned termination suppressors: in vivo activity of isogenetic UAG, UAA, and UGA suppressor tRNAs. J Bacteriol. 1984 Jun;158(3):849–859. [PMC free article] [PubMed]
  • Raftery LA, Yarus M. Systematic alterations in the anticodon arm make tRNA(Glu)-Suoc a more efficient suppressor. EMBO J. 1987 May;6(5):1499–1506. [PMC free article] [PubMed]
  • Resto E, Iida A, Van Cleve MD, Hecht SM. Amplification of protein expression in a cell free system. Nucleic Acids Res. 1992 Nov 25;20(22):5979–5983. [PMC free article] [PubMed]
  • Roesser JR, Chorghade MS, Hecht SM. Ribosome-catalyzed formation of an abnormal peptide analogue. Biochemistry. 1986 Oct 21;25(21):6361–6365. [PubMed]
  • Rould MA, Perona JJ, Söll D, Steitz TA. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science. 1989 Dec 1;246(4934):1135–1142. [PubMed]
  • Rould MA, Perona JJ, Steitz TA. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature. 1991 Jul 18;352(6332):213–218. [PubMed]
  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. [PubMed]
  • Santos MA, Perreau VM, Tuite MF. Transfer RNA structural change is a key element in the reassignment of the CUG codon in Candida albicans. EMBO J. 1996 Sep 16;15(18):5060–5068. [PMC free article] [PubMed]
  • Schultz DW, Yarus M. tRNA structure and ribosomal function. I. tRNA nucleotide 27-43 mutations enhance first position wobble. J Mol Biol. 1994 Feb 4;235(5):1381–1394. [PubMed]
  • Schultz DW, Yarus M. tRNA structure and ribosomal function. II. Interaction between anticodon helix and other tRNA mutations. J Mol Biol. 1994 Feb 4;235(5):1395–1405. [PubMed]
  • Schultz DW, Yarus M. Transfer RNA mutation and the malleability of the genetic code. J Mol Biol. 1994 Feb 4;235(5):1377–1380. [PubMed]
  • Schultz DW, Yarus M. On malleability in the genetic code. J Mol Evol. 1996 May;42(5):597–601. [PubMed]
  • Singer CE, Smith GR, Cortese R, Ames BN. [Mutant tRNA His ineffective in repression and lacking two pseudouridine modifications]. Nat New Biol. 1972 Jul 19;238(81):72–74. [PubMed]
  • Smith D, Yarus M. Transfer RNA structure and coding specificity. I. Evidence that a D-arm mutation reduces tRNA dissociation from the ribosome. J Mol Biol. 1989 Apr 5;206(3):489–501. [PubMed]
  • Smith D, Yarus M. Transfer RNA structure and coding specificity. II. A D-arm tertiary interaction that restricts coding range. J Mol Biol. 1989 Apr 5;206(3):503–511. [PubMed]
  • Suzuki T, Ueda T, Watanabe K. The 'polysemous' codon--a codon with multiple amino acid assignment caused by dual specificity of tRNA identity. EMBO J. 1997 Mar 3;16(5):1122–1134. [PMC free article] [PubMed]
  • Tate WP, Poole ES, Mannering SA. Hidden infidelities of the translational stop signal. Prog Nucleic Acid Res Mol Biol. 1996;52:293–335. [PubMed]
  • Thompson RC, Dix DB, Gerson RB, Karim AM. Effect of Mg2+ concentration, polyamines, streptomycin, and mutations in ribosomal proteins on the accuracy of the two-step selection of aminoacyl-tRNAs in protein biosynthesis. J Biol Chem. 1981 Jul 10;256(13):6676–6681. [PubMed]
  • Yarus M. Translational efficiency of transfer RNA's: uses of an extended anticodon. Science. 1982 Nov 12;218(4573):646–652. [PubMed]
  • Yarus M, Cline SW, Wier P, Breeden L, Thompson RC. Actions of the anticodon arm in translation on the phenotypes of RNA mutants. J Mol Biol. 1986 Nov 20;192(2):235–255. [PubMed]
  • Yarus M, McMillan C, 3rd, Cline S, Bradley D, Snyder M. Construction of a composite tRNA gene by anticodon loop transplant. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5092–5096. [PMC free article] [PubMed]

Articles from RNA are provided here courtesy of The RNA Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...