• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biophysjLink to Publisher's site
Biophys J. Jan 2002; 82(1 Pt 1): 274–284.
PMCID: PMC1302468

Relationship of lipid rafts to transient confinement zones detected by single particle tracking.

Abstract

We examined the physical and chemical characteristics of transient confinement zones (TCZs) that are detected in single particle trajectories of molecules moving within the membrane of C3H 10T1/2 murine fibroblasts and their relationship to "rafts." We studied the lateral movement of different membrane molecules thought to partition to varying degrees into or out of the putative lipid domains known as rafts. We found that lipid analogs spend significantly less time in TCZs compared with Thy-1, a glycosylphosphatidylinositol-anchored protein, and GM1, a glycosphingolipid. For Thy-1, we found that zone abundance was markedly reduced by cholesterol extraction, suggesting that a major source of the observed temporary confinement is related to the presence of raft domains. More detailed analysis of particle trajectories reveals that zones can be revisited even tens of seconds after the original escape and that diffusion within the zones is reduced by a factor of approximately 2, consistent with the zone being a cholesterol-rich liquid-ordered phase. Surprisingly, transient confinement was not strongly temperature dependent. Overall, our data demonstrate that there are raft-related domains present in certain regions of the plasma membrane of C3H cells, which can persist for tens of seconds.

Full Text

The Full Text of this article is available as a PDF (449K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Almeida PF, Vaz WL, Thompson TE. Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry. 1992 Jul 28;31(29):6739–6747. [PubMed]
  • Brown DA, London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–136. [PubMed]
  • Brown DA, London E. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol. 1998 Jul 15;164(2):103–114. [PubMed]
  • Brown DA, Rose JK. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. [PubMed]
  • Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E. Lipid rafts reconstituted in model membranes. Biophys J. 2001 Mar;80(3):1417–1428. [PMC free article] [PubMed]
  • Dráberová L, Dráber P. Thy-1 glycoprotein and src-like protein-tyrosine kinase p53/p56lyn are associated in large detergent-resistant complexes in rat basophilic leukemia cells. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3611–3615. [PMC free article] [PubMed]
  • Heider JG, Boyett RL. The picomole determination of free and total cholesterol in cells in culture. J Lipid Res. 1978 May;19(4):514–518. [PubMed]
  • Hoessli D, Rungger-Brändle E. Association of specific cell-surface glycoproteins with a triton X-100-resistant complex of plasma membrane proteins isolated from T-lymphoma cells (P1798). Exp Cell Res. 1985 Jan;156(1):239–250. [PubMed]
  • Holowka D, Sheets ED, Baird B. Interactions between Fc(epsilon)RI and lipid raft components are regulated by the actin cytoskeleton. J Cell Sci. 2000 Mar;113(Pt 6):1009–1019. [PubMed]
  • Kusumi A, Sako Y. Cell surface organization by the membrane skeleton. Curr Opin Cell Biol. 1996 Aug;8(4):566–574. [PubMed]
  • Kusumi A, Sako Y, Yamamoto M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J. 1993 Nov;65(5):2021–2040. [PMC free article] [PubMed]
  • Lee GM, Ishihara A, Jacobson KA. Direct observation of brownian motion of lipids in a membrane. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6274–6278. [PMC free article] [PubMed]
  • Madore N, Smith KL, Graham CH, Jen A, Brady K, Hall S, Morris R. Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J. 1999 Dec 15;18(24):6917–6926. [PMC free article] [PubMed]
  • Oliferenko S, Paiha K, Harder T, Gerke V, Schwärzler C, Schwarz H, Beug H, Günthert U, Huber LA. Analysis of CD44-containing lipid rafts: Recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol. 1999 Aug 23;146(4):843–854. [PMC free article] [PubMed]
  • Pralle A, Keller P, Florin EL, Simons K, Hörber JK. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol. 2000 Mar 6;148(5):997–1008. [PMC free article] [PubMed]
  • Rodgers W, Zavzavadjian J. Glycolipid-enriched membrane domains are assembled into membrane patches by associating with the actin cytoskeleton. Exp Cell Res. 2001 Jul 15;267(2):173–183. [PubMed]
  • Saxton MJ, Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–399. [PubMed]
  • Schütz GJ, Kada G, Pastushenko VP, Schindler H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 2000 Mar 1;19(5):892–901. [PMC free article] [PubMed]
  • Sheets ED, Lee GM, Simson R, Jacobson K. Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry. 1997 Oct 14;36(41):12449–12458. [PubMed]
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. [PubMed]
  • Simons K, Ikonen E. How cells handle cholesterol. Science. 2000 Dec 1;290(5497):1721–1726. [PubMed]
  • Simson R, Sheets ED, Jacobson K. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys J. 1995 Sep;69(3):989–993. [PMC free article] [PubMed]
  • Simson R, Yang B, Moore SE, Doherty P, Walsh FS, Jacobson KA. Structural mosaicism on the submicron scale in the plasma membrane. Biophys J. 1998 Jan;74(1):297–308. [PMC free article] [PubMed]
  • Stahlhut M, van Deurs B. Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol Biol Cell. 2000 Jan;11(1):325–337. [PMC free article] [PubMed]
  • Stauffer TP, Meyer T. Compartmentalized IgE receptor-mediated signal transduction in living cells. J Cell Biol. 1997 Dec 15;139(6):1447–1454. [PMC free article] [PubMed]
  • Tomishige M, Sako Y, Kusumi A. Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. J Cell Biol. 1998 Aug 24;142(4):989–1000. [PMC free article] [PubMed]
  • Varma R, Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 1998 Aug 20;394(6695):798–801. [PubMed]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...