Logo of biophysjLink to Publisher's site
Biophys J. 2001 Sep; 81(3): 1475–1485.
PMCID: PMC1301626

Barrel-stave model or toroidal model? A case study on melittin pores.


Transmembrane pores induced by amphiphilic peptides, including melittin, are often modeled with the barrel-stave model after the alamethicin pore. We examine this assumption on melittin by using two methods, oriented circular dichroism (OCD) for detecting the orientation of melittin helix and neutron scattering for detecting transmembrane pores. OCD spectra of melittin were systematically measured. Melittin can orient either perpendicularly or parallel to a lipid bilayer, depending on the physical condition and the composition of the bilayer. Transmembrane pores were detected when the helices oriented perpendicularly to the plane of the bilayers, not when the helices oriented parallel to the bilayers. The evidence that led to the barrel-stave model for alamethicin and that to the toroidal model for magainin were reviewed. The properties of melittin pores are closely similar to that of magainin but unlike that of alamethicin. We conclude that, among naturally produced peptides that we have investigated, only alamethicin conforms to the barrel-stave model. Other peptides, including magainins, melittin and protegrins, all appear to induce transmembrane pores that conform to the toroidal model in which the lipid monolayer bends continuously through the pore so that the water core is lined by both the peptides and the lipid headgroups.

Full Text

The Full Text of this article is available as a PDF (1.1M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Altenbach C, Froncisz W, Hyde JS, Hubbell WL. Conformation of spin-labeled melittin at membrane surfaces investigated by pulse saturation recovery and continuous wave power saturation electron paramagnetic resonance. Biophys J. 1989 Dec;56(6):1183–1191. [PMC free article] [PubMed]
  • Baumann G, Mueller P. A molecular model of membrane excitability. J Supramol Struct. 1974;2(5-6):538–557. [PubMed]
  • Bechinger B. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membr Biol. 1997 Apr 1;156(3):197–211. [PubMed]
  • Boman HG. Antimicrobial peptides. Chairman's opening remarks. Ciba Found Symp. 1994;186:1–4. [PubMed]
  • Brauner JW, Mendelsohn R, Prendergast FG. Attenuated total reflectance Fourier transform infrared studies of the interaction of melittin, two fragments of melittin, and delta-hemolysin with phosphatidylcholines. Biochemistry. 1987 Dec 15;26(25):8151–8158. [PubMed]
  • Dempsey CE. The actions of melittin on membranes. Biochim Biophys Acta. 1990 May 7;1031(2):143–161. [PubMed]
  • Duclohier H, Molle G, Spach G. Antimicrobial peptide magainin I from Xenopus skin forms anion-permeable channels in planar lipid bilayers. Biophys J. 1989 Nov;56(5):1017–1021. [PMC free article] [PubMed]
  • Eisenberg D, Terwilliger TC, Tsui F. Structural studies of bee melittin. Biophys J. 1980 Oct;32(1):252–254. [PMC free article] [PubMed]
  • Fox RO, Jr, Richards FM. A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-A resolution. Nature. 1982 Nov 25;300(5890):325–330. [PubMed]
  • Frey S, Tamm LK. Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study. Biophys J. 1991 Oct;60(4):922–930. [PMC free article] [PubMed]
  • Ganz T. Defensins and host defense. Science. 1999 Oct 15;286(5439):420–421. [PubMed]
  • Ganz T. Paneth cells--guardians of the gut cell hatchery. Nat Immunol. 2000 Aug;1(2):99–100. [PubMed]
  • Habermann E. Bee and wasp venoms. Science. 1972 Jul 28;177(4046):314–322. [PubMed]
  • Habermann E, Jentsch J. Sequenzanalyse des Melittins aus den tryptischen und peptischen Spaltstücken. Hoppe Seylers Z Physiol Chem. 1967 Jan;348(1):37–50. [PubMed]
  • Hall JE. Voltage-dependent lipid flip-flop induced by alamethicin. Biophys J. 1981 Mar;33(3):373–381. [PMC free article] [PubMed]
  • Hall JE, Vodyanoy I, Balasubramanian TM, Marshall GR. Alamethicin. A rich model for channel behavior. Biophys J. 1984 Jan;45(1):233–247. [PMC free article] [PubMed]
  • Hanke W, Methfessel C, Wilmsen HU, Katz E, Jung G, Boheim G. Melittin and a chemically modified trichotoxin form alamethicin-type multi-state pores. Biochim Biophys Acta. 1983 Jan 5;727(1):108–114. [PubMed]
  • He K, Ludtke SJ, Huang HW, Worcester DL. Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. Biochemistry. 1995 Dec 5;34(48):15614–15618. [PubMed]
  • He K, Ludtke SJ, Worcester DL, Huang HW. Neutron scattering in the plane of membranes: structure of alamethicin pores. Biophys J. 1996 Jun;70(6):2659–2666. [PMC free article] [PubMed]
  • Heller WT, He K, Ludtke SJ, Harroun TA, Huang HW. Effect of changing the size of lipid headgroup on peptide insertion into membranes. Biophys J. 1997 Jul;73(1):239–244. [PMC free article] [PubMed]
  • Heller WT, Waring AJ, Lehrer RI, Harroun TA, Weiss TM, Yang L, Huang HW. Membrane thinning effect of the beta-sheet antimicrobial protegrin. Biochemistry. 2000 Jan 11;39(1):139–145. [PubMed]
  • Heller WT, Waring AJ, Lehrer RI, Huang HW. Multiple states of beta-sheet peptide protegrin in lipid bilayers. Biochemistry. 1998 Dec 8;37(49):17331–17338. [PubMed]
  • Hirsh DJ, Hammer J, Maloy WL, Blazyk J, Schaefer J. Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers. Biochemistry. 1996 Oct 1;35(39):12733–12741. [PubMed]
  • Huang HW. Action of antimicrobial peptides: two-state model. Biochemistry. 2000 Jul 25;39(29):8347–8352. [PubMed]
  • Huang HW, Wu Y. Lipid-alamethicin interactions influence alamethicin orientation. Biophys J. 1991 Nov;60(5):1079–1087. [PMC free article] [PubMed]
  • Hung WC, Chen FY, Huang HW. Order-disorder transition in bilayers of diphytanoyl phosphatidylcholine. Biochim Biophys Acta. 2000 Jul 31;1467(1):198–206. [PubMed]
  • Kanda P, Kennedy RC, Sparrow JT. Synthesis of polyamide supports for use in peptide synthesis and as peptide-resin conjugates for antibody production. Int J Pept Protein Res. 1991 Oct;38(4):385–391. [PubMed]
  • Katsu T, Ninomiya C, Kuroko M, Kobayashi H, Hirota T, Fujita Y. Action mechanism of amphipathic peptides gramicidin S and melittin on erythrocyte membrane. Biochim Biophys Acta. 1988 Mar 22;939(1):57–63. [PubMed]
  • Ladokhin AS, Selsted ME, White SH. Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys J. 1997 Apr;72(4):1762–1766. [PMC free article] [PubMed]
  • Latorre R, Alvarez O. Voltage-dependent channels in planar lipid bilayer membranes. Physiol Rev. 1981 Jan;61(1):77–150. [PubMed]
  • Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW. Membrane pores induced by magainin. Biochemistry. 1996 Oct 29;35(43):13723–13728. [PubMed]
  • Ludtke S, He K, Huang H. Membrane thinning caused by magainin 2. Biochemistry. 1995 Dec 26;34(51):16764–16769. [PubMed]
  • Ludtke SJ, He K, Wu Y, Huang HW. Cooperative membrane insertion of magainin correlated with its cytolytic activity. Biochim Biophys Acta. 1994 Feb 23;1190(1):181–184. [PubMed]
  • Mak DO, Webb WW. Two classes of alamethicin transmembrane channels: molecular models from single-channel properties. Biophys J. 1995 Dec;69(6):2323–2336. [PMC free article] [PubMed]
  • Marion D, Zasloff M, Bax A. A two-dimensional NMR study of the antimicrobial peptide magainin 2. FEBS Lett. 1988 Jan 18;227(1):21–26. [PubMed]
  • Martin E, Ganz T, Lehrer RI. Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol. 1995 Aug;58(2):128–136. [PubMed]
  • Matsuzaki K, Harada M, Funakoshi S, Fujii N, Miyajima K. Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim Biophys Acta. 1991 Mar 18;1063(1):162–170. [PubMed]
  • Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry. 1996 Sep 3;35(35):11361–11368. [PubMed]
  • Matsuzaki K, Murase O, Tokuda H, Funakoshi S, Fujii N, Miyajima K. Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry. 1994 Mar 22;33(11):3342–3349. [PubMed]
  • Matsuzaki K, Yoneyama S, Miyajima K. Pore formation and translocation of melittin. Biophys J. 1997 Aug;73(2):831–838. [PMC free article] [PubMed]
  • Naito A, Nagao T, Norisada K, Mizuno T, Tuzi S, Saitô H. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy. Biophys J. 2000 May;78(5):2405–2417. [PMC free article] [PubMed]
  • Okada A, Wakamatsu K, Miyazawa T, Higashijima T. Vesicle-bound conformation of melittin: transferred nuclear Overhauser enhancement analysis in the presence of perdeuterated phosphatidylcholine vesicles. Biochemistry. 1994 Aug 16;33(32):9438–9446. [PubMed]
  • Opsahl LR, Webb WW. Transduction of membrane tension by the ion channel alamethicin. Biophys J. 1994 Jan;66(1):71–74. [PMC free article] [PubMed]
  • Oren Z, Shai Y. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Biochemistry. 1997 Feb 18;36(7):1826–1835. [PubMed]
  • Sansom MS. The biophysics of peptide models of ion channels. Prog Biophys Mol Biol. 1991;55(3):139–235. [PubMed]
  • Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):55–70. [PubMed]
  • Terwilliger TC, Weissman L, Eisenberg D. The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. Biophys J. 1982 Jan;37(1):353–361. [PMC free article] [PubMed]
  • Tossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers. 2000;55(1):4–30. [PubMed]
  • Tosteson MT, Tosteson DC. The sting. Melittin forms channels in lipid bilayers. Biophys J. 1981 Oct;36(1):109–116. [PMC free article] [PubMed]
  • Vogel H. Comparison of the conformation and orientation of alamethicin and melittin in lipid membranes. Biochemistry. 1987 Jul 14;26(14):4562–4572. [PubMed]
  • Vogel H, Jähnig F. The structure of melittin in membranes. Biophys J. 1986 Oct;50(4):573–582. [PMC free article] [PubMed]
  • Vogel H, Jähnig F, Hoffmann V, Stümpel J. The orientation of melittin in lipid membranes. A polarized infrared spectroscopy study. Biochim Biophys Acta. 1983 Sep 7;733(2):201–209. [PubMed]
  • Williams RW, Starman R, Taylor KM, Gable K, Beeler T, Zasloff M, Covell D. Raman spectroscopy of synthetic antimicrobial frog peptides magainin 2a and PGLa. Biochemistry. 1990 May 8;29(18):4490–4496. [PubMed]
  • Woolley GA, Wallace BA. Model ion channels: gramicidin and alamethicin. J Membr Biol. 1992 Aug;129(2):109–136. [PubMed]
  • Wu Y, He K, Ludtke SJ, Huang HW. X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys J. 1995 Jun;68(6):2361–2369. [PMC free article] [PubMed]
  • Wu Y, Huang HW, Olah GA. Method of oriented circular dichroism. Biophys J. 1990 Apr;57(4):797–806. [PMC free article] [PubMed]
  • Yang L, Harroun TA, Heller WT, Weiss TM, Huang HW. Neutron off-plane scattering of aligned membranes. I. Method Of measurement. Biophys J. 1998 Aug;75(2):641–645. [PMC free article] [PubMed]
  • Yang L, Weiss TM, Harroun TA, Heller WT, Huang HW. Supramolecular structures of peptide assemblies in membranes by neutron off-plane scattering: method of analysis. Biophys J. 1999 Nov;77(5):2648–2656. [PMC free article] [PubMed]
  • Yang L, Weiss TM, Lehrer RI, Huang HW. Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J. 2000 Oct;79(4):2002–2009. [PMC free article] [PubMed]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem chemical compound records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records. Multiple substance records may contribute to the PubChem compound record.
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...